Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/25954
Title: | Memristive Circuit Design of Sequencer Network for Human Emotion Classification |
Authors: | Ji, X Dong, Z Wang, H Lai, CS Qi, D |
Keywords: | costs;two dimensional displays;memristors;mental health;hardware;computational efficiency;circuit synthesis |
Issue Date: | 7-Nov-2022 |
Publisher: | Institute of Electrical and Electronics Engineers (IEEE) |
Citation: | Ji, X. et al. (2022) 'Memristive Circuit Design of Sequencer Network for Human Emotion Classification', 2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE), Tainan, Taiwan, 7-10 October, pp. 1 - 4. doi: 10.1109/RASSE54974.2022.9989605. |
Abstract: | Mental health problem is an increasingly common social issue leading to diseases such as depression, addiction, and heart attack. Facial expression is one of the most natural and universal signals for human beings to convey their emotional states and behavior intentions. Numerous studies have been conducted on automatic human emotion classification that can effectively establish the relationship between facial expression and mental health, while still suffer from intensive computation and low efficiency. Here, we present a memristive circuit design of Sequencer network for human emotion classification, which offers an environmentally friendly approach with low cost and easily deployable hardware. Specifically, a kind of eco-friendly memristor is fabricated using two-dimensional (2D) materials, and the corresponding testing performance is conducted to make sure its efficiency and stability. Then, the memristor-based Sequencer block, as a core component of Sequencer network, consisting of bidirectional long short-term memory (BiLSTM) circuit and some necessary function circuit modules is proposed. Based on this, the memristive Sequencer network can be achieved. Furthermore, the proposed memristive Sequencer network is applied for human emotion classification. The experimental results demonstrate that the proposed circuit has advantages in computational efficiency and cost, comparable to the main existing software-based methods. |
URI: | https://bura.brunel.ac.uk/handle/2438/25954 |
DOI: | https://doi.org/10.1109/RASSE54974.2022.9989605 |
ISBN: | 978-1-6654-9491-5 (ebk) |
ISSN: | 978-1-6654-9492-2 (PoD) |
Other Identifiers: | ORCID iD: Chun Sing Lai https://orcid.org/0000-0002-4169-4438 |
Appears in Collections: | Dept of Electronic and Electrical Engineering Research Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FullText.pdf | Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. See: https://www.ieee.org/publications/rights/rights-policies.html | 1.44 MB | Adobe PDF | View/Open |
Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.