Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/26714
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gaitanelis, D | - |
dc.contributor.author | Chanteli, A | - |
dc.contributor.author | Worrall, C | - |
dc.contributor.author | Weaver, PM | - |
dc.contributor.author | Kazilas, M | - |
dc.date.accessioned | 2023-06-21T16:48:53Z | - |
dc.date.available | 2023-06-21T16:48:53Z | - |
dc.date.issued | 2023-02-10 | - |
dc.identifier | ORCID iDs: Dimitrios Gaitanelis https://orcid.org/0000-0002-9392-9841; Mihalis Kazilas https://orcid.org/0000-0001-6613-9118. | - |
dc.identifier | 110282 | - |
dc.identifier.citation | Gaitanelis, D. et al. (2023) 'A multi-technique and multi-scale analysis of the thermal degradation of PEEK in laser heating', Polymer Degradation and Stability, 211, 110282, pp. 1 - 12. doi: 10.1016/j.polymdegradstab.2023.110282. | en_US |
dc.identifier.issn | 0141-3910 | - |
dc.identifier.uri | https://bura.brunel.ac.uk/handle/2438/26714 | - |
dc.description | Data availability: Data will be made available on request. | en_US |
dc.description.abstract | Copyright © 2023 The Author(s). The present work studies the thermal degradation of laser-heated poly-ether-ether-ketone (PEEK) as the heating duration increases. Its damage morphology, chemical composition, crystallinity content, and mechanical properties are examined with optical microscopy, attenuated total reflection-Fourier transform infrared spectroscopy, differential scanning calorimetry, Raman spectroscopy, and continuous stiffness measurement nanoindentation. The applicability of those methods in detecting the thermal degradation of laser-heated PEEK and assessing the induced thermal damage is highlighted. Results show that short-time laser heating acts as an annealing process that improves the crystallinity and hardness on the affected surface of PEEK by up to 5.1% and 10.8% respectively. With a further increase in the heating duration, surface carbonisation occurs and a char layer is formed. Surface carbonisation is associated with the thermal limits of PEEK in laser heating decreasing by up to 50% its hardness and by 45% its indentation modulus. Finally, the char layer is found to act as a shielding mechanism that protects the bulk PEEK from the applied thermal load, resulting in mostly superficial thermally induced damage. | en_US |
dc.description.sponsorship | This publication was made possible by the sponsorship and support of TWI. The work was enabled through, and undertaken at, the National Structural Integrity Research Centre (NSIRC), a postgraduate engineering facility for industry-led research into structural integrity established and managed by TWI through a network of both national and international Universities. Dimitrios Gaitanelis and Dr Angeliki Chanteli would like to thank Young European Research Universities Network (YERUN) for being awarded the YERUN Research Mobility Award 2021 to proceed to this collaboration. Dr Angeliki Chanteli and Professor Paul M. Weaver would like to thank Science Foundation Ireland (SFI) for funding Spatially and Temporally VARIable COMPosite Structures (VARICOMP) Grant No. (15/RP/2773) under its Research Professor programme. | en_US |
dc.format.extent | 1 - 12 | - |
dc.language | English | - |
dc.language.iso | en_US | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/). | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | poly-ether-ether-ketone (PEEK) | en_US |
dc.subject | thermal degradation | en_US |
dc.subject | laser heating | en_US |
dc.subject | laser annealing | en_US |
dc.subject | surface carbonisation | en_US |
dc.subject | char layer | en_US |
dc.subject | nanoindentation | en_US |
dc.subject | Fourier-transform infrared (FTIR) spectroscopy | en_US |
dc.subject | differential scanning calorimetry (DSC) | en_US |
dc.subject | Raman spectroscopy | en_US |
dc.title | A multi-technique and multi-scale analysis of the thermal degradation of PEEK in laser heating | en_US |
dc.type | Article | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.polymdegradstab.2023.110282 | - |
dc.relation.isPartOf | Polymer Degradation and Stability | - |
pubs.publication-status | Published | - |
pubs.volume | 211 | - |
dc.identifier.eissn | 1873-2321 | - |
dc.rights.holder | The Author(s) | - |
Appears in Collections: | Brunel Composites Centre |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FullText.pdf | Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/). | 15.69 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License