Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/27203| Title: | The Calabi Problem for Fano Threefolds |
| Authors: | Araujo, C Castravet, A-M Cheltsov, I Fujita, K Kaloghiros, A-S Martinez-Garcia, J Shramov, C Süß, H Viswanathan, N |
| Keywords: | mathematics;geometry and topology;algebra |
| Issue Date: | 30-Jun-2023 |
| Publisher: | Cambridge University Press |
| Citation: | Araujo, C. et al. (2023) The Calabi Problem for Fano Threefolds. Cambridge: Cambridge University Press, pp. i - viii, 1 - 442. doi: 10.1017/9781009193382. |
| Abstract: | We show that all smooth Fano threefolds No2.26 are not K - polystable, and prove Main Theorem Let X be a general Fano threefold in the family NoN . Then 2.23,2.28 , 2.30 , 2.31 , 2.33 , 2.35 , 2.36 , 3.14 , 3.16 , 3.18 , X is K ... |
| URI: | https://bura.brunel.ac.uk/handle/2438/27203 |
| ISBN: | 978-1-009-23965-3 (pbk) 978-1-009-19338-2 (ebk) |
| Other Identifiers: | ORCiD: Anne-Sophie Kaloghiros https://orcid.org/0000-0002-8305-8229 |
| Appears in Collections: | Dept of Mathematics Embargoed Research Papers |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Calabi-problem.pdf | Embargoed indefinitly | 2.09 MB | Adobe PDF | View/Open |
| Calabi_book_final.pdf | Embargoed indefinitely | 2.73 MB | Adobe PDF | View/Open |
Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.