Please use this identifier to cite or link to this item:
Title: The Calabi Problem for Fano Threefolds
Authors: Araujo, C
Castravet, A-M
Cheltsov, I
Fujita, K
Kaloghiros, A-S
Martinez-Garcia, J
Shramov, C
Süß, H
Viswanathan, N
Keywords: mathematics;geometry and topology;algebra
Issue Date: 30-Jun-2023
Publisher: Cambridge University Press
Citation: Araujo, C. et al. (2023) The Calabi Problem for Fano Threefolds. Cambridge: Cambridge University Press, pp. i - viii, 1 - 442. doi: 10.1017/9781009193382.
Abstract: We show that all smooth Fano threefolds No2.26 are not K - polystable , and prove Main Theorem Let X be a general Fano threefold in the family NoN . Then 2.23,2.28 , 2.30 , 2.31 , 2.33 , 2.35 , 2.36 , 3.14 , 3.16 , 3.18 , X is K ...
ISBN: 978-1-009-23965-3 (pbk)
978-1-009-19338-2 (ebk)
Other Identifiers: ORCID iD: Anne-Sophie Kaloghiros
Appears in Collections:Dept of Mathematics Embargoed Research Papers

Files in This Item:
File Description SizeFormat 
Calabi-problem.pdfEmbargoed indefinitly2.09 MBAdobe PDFView/Open
Calabi_book_final.pdfEmbargoed indefinitely2.73 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.