Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/28456
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Q-
dc.contributor.authorWang, Y-
dc.contributor.authorLi, X-
dc.contributor.authorGong, B-
dc.date.accessioned2024-03-03T10:13:20Z-
dc.date.available2024-03-03T10:13:20Z-
dc.date.issued2024-02-29-
dc.identifierORCiD: Qihang Li https://orcid.org/0000-0002-1303-2621-
dc.identifierORCiD: Yunmin Wang https://orcid.org/0009-0006-8397-3714-
dc.identifierORCiD: Xiaoshuang Li https://orcid.org/0000-0001-7469-8390-
dc.identifierORCiD: Bin Gong https://orcid.org/0000-0002-9464-3423-
dc.identifier740-
dc.identifier.citationLi, Q. et al. (2024) 'Rainfall-Mining Coupling Effects on Slope Failure Mechanism and Evolution Process: A Case Study of Open-Pit to Underground Mining', Water, 16 (5), 740, pp. 1 - 26. doi: 10.20944/preprints202401.1051.v1.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/28456-
dc.descriptionData Availability Statement: Most of the data generated during this study are included in the article. For other datasets, please contact the corresponding authors with reasonable requests.en_US
dc.description.abstractThis research examines how rainfall and mining affect the slope damage resulting from the transition from open-pit mining to underground mining. Using an unmanned aerial vehicle (UAV), the Huangniu slope of the Dexing Copper Mine was fully characterized, and experiments were conducted on rock samples from appropriate sites. First, the mechanical properties of the samples were measured. Then, the parameters of the similarity simulation experiments were derived based on the similarity theory. Subsequently, the rainfall, rock slope, data acquisition, and monitoring systems were designed. Finally, the rock mass failure with different slope angles was analyzed, and the deformation and damage patterns under the coupling effect were obtained. The results show that rainfall increases pore water pressure and moisture content. Rainfall and slope-slip water have more of an impact on the open-pit platform. The pore water pressure values on the upper rock mass rise faster than inside it. In the open-pit mining stage, the rock mass shifts slightly to the upper left. In the room mining stage, vertical fractures and goaf sinking occur. The fractures above the mine form a semi-ellipse. In the pillar mining stage, overlying rock displacement is evident and fractures persist. In the continuous pillar mining stage, the overlying rock collapses. The 65° slope model was the most damaged, while the 55° slope model was the least damaged. The results also suggest that the UAV guides sample selection.en_US
dc.description.sponsorshipResearch Fund of National Natural Science Foundation of China (NSFC) (No. 42277154); National Key Research and Development Project (No. 2023YFC2907305); Guizhou Province Science and Technology Planning Project (No. Guizhou science and technology cooperation support (2022) common 229); National Natural Science Foundation of Shandong Province of China (NSFC) (No. ZR2022ME188); State Key Laboratory of Coal Resources and Safe Mining, CUMT (No. SKLCRSM22KF009); project of Slope safety control and disaster prevention technology innovation team of “Youth Innovation Talent Introduction and Education Plan” of Shandong Colleges and universities (Grant No. Lu Jiao Ke Han (2021) No. 51).en_US
dc.format.extent1 - 26-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.rightsCopyright © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectrainfall and mining couplingen_US
dc.subjectopen-pit to underground miningen_US
dc.subjectrock slopeen_US
dc.subjectfailure mechanismen_US
dc.subjectevolution processen_US
dc.subjectsimilarity simulation experimenten_US
dc.titleRainfall-Mining Coupling Effects on Slope Failure Mechanism and Evolution Process: A Case Study of Open-Pit to Underground Miningen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.20944/preprints202401.1051.v1-
dc.relation.isPartOfWater-
pubs.issue5-
pubs.publication-statusPublished-
pubs.volume16-
dc.identifier.eissn2073-4441-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe authors-
Appears in Collections:Dept of Civil and Environmental Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).22.63 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons