Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29117
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXiao, X-
dc.contributor.authorHu, Q-
dc.contributor.authorJiao, H-
dc.contributor.authorWang, Y-
dc.contributor.authorBadiei, A-
dc.date.accessioned2024-06-04T16:28:32Z-
dc.date.available2024-06-04T16:28:32Z-
dc.date.issued2022-07-21-
dc.identifierORCiD: Xin Xiao https://orcid.org/0000-0003-0718-2591-
dc.identifierORCiD: Qian Hu https://orcid.org/0009-0005-6242-0726-
dc.identifierORCiD: Yunfeng Wang https://orcid.org/0000-0002-2986-0464-
dc.identifierORCiD: Ali Badiei https://orcid.org/0000-0002-2103-2955-
dc.identifier11365-
dc.identifier.citationXiao, X. et al. (2023) 'Simulation and Machine Learning Investigation on Thermoregulation Performance of Phase Change Walls', Sustainability, 15 (14),11365, pp. 1 - 22. doi: 10.3390/su151411365.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/29117-
dc.descriptionData Availability Statement: Not applicable.en_US
dc.description.abstractThe outdoor thermal environment can be regarded as a significant factor influencing indoor thermal conditions. The application of phase change materials (PCMs) to the building envelope has the potential to improve the heat storage performance of building walls and, therefore, effectively regulate the temperature variations of the inner surfaces of walls. COMSOL Multiphysics software was adopted firstly to perform the simulations on the thermoregulation performance of phase change wall; the time duration of the temperature at the internal side maintained within the thermal comfort range was used as a quantitative evaluation index of the thermoregulation effects. It was revealed from the simulation results that the time durations of thermal comfort were extended to 5021 s and 4102 s, respectively, when the brick walls were filled with two types of composite PCMs, namely eutectic hydrate (EHS, Na2CO3·10H2O and Na2HPO4·12H2O with the ratio of 4∶6)/5 wt.% BN and EHS/5 wt.% BN/7.5 wt.% expanded graphite (EG), under the conditions of 18 °C ambient temperature and 60 °C heating temperature at the charging stage. Both of them were longer than 3011 s, which corresponds to a pure brick wall. EHS/5 wt.% BN/7.5 wt.% EG exhibited better leakage prevention performance and, therefore, was a candidate for actual application, in comparison with EHS/5 wt.% BN. Then, a machine learning training process focused on the temperature control effects of phase change wall was carried out using a BP neural network, where the heating surface and ambient temperature were used as input variables and the time duration of indoor thermal comfort was the output variable. Finally, the learning deviation between the raw data and the results obtained from machine learning was within 5%, indicating that machine learning can accurately predict the temperature control effects of the phase change wall. The results of the simulations and machine learning can provide information and guidance for the advantages and potentials of PCMs of hydrate salts when being applied to the building envelope. In addition, the accurate prediction of machine learning demonstrated its application prospects to the research of phase change walls.en_US
dc.description.sponsorshipShanghai Pujiang Program, grant number 20PJ1400200; Yunnan Provincial Rural Energy Engineering Key Laboratory, grant number 2022KF001; the Fundamental Research Funds for the Central Universities of China, grant number 2232021D-11.en_US
dc.format.extent1 - 22-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.rightsCopyright © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectphase change wallen_US
dc.subjectradiative heatingen_US
dc.subjectnumerical simulationen_US
dc.subjectmachine learningen_US
dc.titleSimulation and Machine Learning Investigation on Thermoregulation Performance of Phase Change Wallsen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.3390/su151411365-
dc.relation.isPartOfSustainability-
pubs.issue14-
pubs.publication-statusPublished online-
pubs.volume15-
dc.identifier.eissn2071-1050-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe authors-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Embargoed Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).10.1 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons