Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29390
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLou, X-
dc.contributor.authorLi, X-
dc.contributor.authorMeng, H-
dc.contributor.authorHu, J-
dc.contributor.authorXu, M-
dc.contributor.authorZhao, Y-
dc.contributor.authorYang, J-
dc.contributor.authorLi, Z-
dc.date.accessioned2024-07-21T12:21:33Z-
dc.date.available2024-07-21T12:21:33Z-
dc.date.issued2024-06-19-
dc.identifierORCiD: Honying Meng https://orcid.org/0000-0002-8836-1382-
dc.identifierCoRR abs/2405.16090-
dc.identifierarXiv:2405.16090v3 [cs.HC]-
dc.identifier.citationLou, X. et al. (2025) 'EEG-DBNet: A Dual-Branch Network for Temporal-Spectral Decoding in Motor-Imagery Brain-Computer Interfaces.', arXiv preprint, pp. 1 - 10. doi: 10.48550/arXiv.2405.16090.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/29390-
dc.descriptionThe source code is available at https://github.com/xicheng105/EEG-DBNet .en_US
dc.descriptionA preprint version of the article is available at arXiv:2405.16090v3 [cs.HC], https://arxiv.org/abs/2405.16090 . It has not been certified by peer review.-
dc.description.abstractMotor imagery electroencephalogram (EEG)-based brain-computer interfaces (BCIs) offer significant advantages for individuals with restricted limb mobility. However, challenges such as low signal-to-noise ratio and limited spatial resolution impede accurate feature extraction from EEG signals, thereby affecting the classification accuracy of different actions. To address these challenges, this study proposes an end-to-end dual-branch network (EEG-DBNet) that decodes the temporal and spectral sequences of EEG signals in parallel through two distinct network branches. Each branch comprises a local convolutional block and a global convolutional block. The local convolutional block transforms the source signal from the temporal-spatial domain to the temporal-spectral domain. By varying the number of filters and convolution kernel sizes, the local convolutional blocks in different branches adjust the length of their respective dimension sequences. Different types of pooling layers are then employed to emphasize the features of various dimension sequences, setting the stage for subsequent global feature extraction. The global convolution block splits and reconstructs the feature of the signal sequence processed by the local convolution block in the same branch and further extracts features through the dilated causal convolutional neural networks. Finally, the outputs from the two branches are concatenated, and signal classification is completed via a fully connected layer. Our proposed method achieves classification accuracies of 85.84% and 91.60% on the BCI Competition 4-2a and BCI Competition 4-2b datasets, respectively, surpassing existing state-of-the-art models.en_US
dc.description.sponsorship...en_US
dc.format.mediumPrint-Electronic-
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.relation.urihttps://github.com/xicheng105/EEG-DBNet-
dc.relation.urihttps://arxiv.org/abs/2405.16090-
dc.rightsCopyright © 2024 The Author(s). arXiv.org - Non-exclusive license to distribute. The URI http://arxiv.org/licenses/nonexclusive-distrib/1.0/ is used to record the fact that the submitter granted the following license to arXiv.org on submission of an article: I grant arXiv.org a perpetual, non-exclusive license to distribute this article. I certify that I have the right to grant this license. I understand that submissions cannot be completely removed once accepted. I understand that arXiv.org reserves the right to reclassify or reject any submission.-
dc.rights.urihttps://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html-
dc.subjectelectroencephalogram (EEG)en_US
dc.subjectmotor imagery (MI)en_US
dc.subjectbrain-computer interfaces (BCIs)en_US
dc.subjectneural networksen_US
dc.titleEEG-DBNet: A Dual-Branch Network for Temporal-Spectral Decoding in Motor-Imagery Brain-Computer Interfaces.en_US
dc.typePreprinten_US
dc.relation.isPartOfarXiv-
dc.identifier.eissn2331-8422-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
AAM.pdfEmbargoed until publication1.28 MBAdobe PDFView/Open
Preprint.pdfCopyright © 2024 The Author(s). arXiv.org - Non-exclusive license to distribute. The URI http://arxiv.org/licenses/nonexclusive-distrib/1.0/ is used to record the fact that the submitter granted the following license to arXiv.org on submission of an article: I grant arXiv.org a perpetual, non-exclusive license to distribute this article. I certify that I have the right to grant this license. I understand that submissions cannot be completely removed once accepted. I understand that arXiv.org reserves the right to reclassify or reject any submission.2.69 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.