Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/29478
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, X | - |
dc.contributor.author | Li, Y | - |
dc.contributor.author | Noman, K | - |
dc.contributor.author | Nandi, AK | - |
dc.date.accessioned | 2024-08-02T10:52:24Z | - |
dc.date.available | 2024-08-02T10:52:24Z | - |
dc.date.issued | 2024-07-10 | - |
dc.identifier | ORCiD: Xin Wang https://orcid.org/0000-0001-5223-9628 | - |
dc.identifier | ORCiD: Asoke K. Nandi https://orcid.org/0000-0001-6248-2875 | - |
dc.identifier | 110348 | - |
dc.identifier.citation | Wang, X. et al. (2024) 'Multi-task learning mixture density network for interval estimation of the remaining useful life of rolling element bearings', Reliability Engineering and System Safety, 251, 110348, pp. 1 - 12. doi: 10.1016/j.ress.2024.110348. | en_US |
dc.identifier.issn | 0951-8320 | - |
dc.identifier.uri | https://bura.brunel.ac.uk/handle/2438/29478 | - |
dc.description | Data availability: The authors would like to thank Intelligent Maintenance Systems, University of Cincinnati for their public data. | en_US |
dc.description.abstract | Existing remaining useful life (RUL) predictions of rolling element bearings have the following shortcomings. 1) Model-driven methods typically employ a sole model for processing the data of an individual, making it challenging to accommodate the variety of degradation behaviors and susceptible to abnormal interference. 2) Data-driven methods place greater emphasis on training data, and in reality, it can be challenging to acquire comprehensive data covering the lifecycle. 3) Many studies fail to give adequate attention to the assessment of RUL uncertainty. This paper proposes a multi-task learning mixture density network (MTL-MDN) method to address these issues. Firstly, the peak-of-Histogram (PoHG) is extracted and served as the novel health indicators. Secondly, multi-task learning dictionaries are constructed based on the evolution law of PoHG, thus combining both model-driven and data-driven strategies. Finally, a multi-task learning strategy is proposed with mixture density networks. It effectively accomplishes the collaborative learning objective of numerous degradation samples in the regression problem and accomplishes the uncertainty assessment of RUL. After analyzing the experimental and real-world degradation data of rolling element bearings throughout their lifecycle, and comparing it to other modern RUL prediction methods, it becomes evident that the proposed MTL-MDN method offers superior prediction accuracy and robustness. | en_US |
dc.description.sponsorship | This work was supported by the National Natural Science Foundation of China under Grant No. 12172290 and 52250410345. | en_US |
dc.format.extent | 1 - 12 | - |
dc.format.medium | Print-Electronic | - |
dc.language | English | - |
dc.language.iso | en_US | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | Copyright © 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ (see: https://www.elsevier.com/about/policies/sharing). | - |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | multi-task learning | en_US |
dc.subject | mixture density network | en_US |
dc.subject | uncertainty assessment | en_US |
dc.subject | remaining useful life | en_US |
dc.subject | rolling element bearing | en_US |
dc.title | Multi-task learning mixture density network for interval estimation of the remaining useful life of rolling element bearings | en_US |
dc.type | Article | en_US |
dc.date.dateAccepted | 2024-07-09 | - |
dc.identifier.doi | https://doi.org/10.1016/j.ress.2024.110348 | - |
dc.relation.isPartOf | Reliability Engineering and System Safety | - |
pubs.issue | November 2024 | - |
pubs.publication-status | Published | - |
pubs.volume | 251 | - |
dc.identifier.eissn | 1879-0836 | - |
dc.rights.license | https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en | - |
dc.rights.holder | Elsevier Ltd. | - |
Appears in Collections: | Dept of Electronic and Electrical Engineering Embargoed Research Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FullText.pdf | Embargoed until 10 July 2025 | 2.43 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License