Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29488
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeyyedi Razaz, SP-
dc.contributor.authorBazooyar, B-
dc.contributor.authorPirhoushyaran, T-
dc.contributor.authorShaahmadi, F-
dc.date.accessioned2024-08-03T10:01:33Z-
dc.date.available2024-08-03T10:01:33Z-
dc.date.issued2018-10-10-
dc.identifierORCiD: Bahamin Bazooyar https://orcid.org/0000-0002-7341-4509-
dc.identifier.citationSeyyedi Razaz, S.P. et al. (2018) 'Evolving a least square support vector machine using real coded shuffled complex evolution for property estimation of aqueous ionic liquids', Thermochimica Acta, 670, pp. 27 - 34. doi: 10.1016/j.tca.2018.10.005.en_US
dc.identifier.issn0040-6031-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/29488-
dc.description.abstractIn this study, we demonstrate how least square support vector machine (LSSVM) evolution with the shuffled complex evolution (SCE) ameliorates the predictability and reliability of the support vector machine as an estimation tool for thermodynamic of ionic liquids solutions. This strategy is applied to forecast the osmotic-coefficient of the 26 different ionic liquids by utilizing the 1409 available archival literature data points. Our methodology is the development of a hybrid SCE-LSSVM algorithm. Shuffled complex evolution is used to decide the hyper parameters of support vector machines so that all the initial weights can be searched and obtained intelligently. The evolution operators and parameters are carefully designed and set to avoid premature convergence and permutation problems. The results demonstrate that carefully designed SCE-LSSVM outperforms the structural risk minimization of support vector machines, predicting the properties of aqueous solutions in a way, even better than the available models.en_US
dc.format.extent27 - 34-
dc.format.mediumPrint-Electronic-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsCopyright © 2018 Elsevier B.V. All rights reserved..This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ (see: https://www.elsevier.com/about/policies/sharing).-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectosmotic coefficienten_US
dc.subjectLSSVMen_US
dc.subjectSCEen_US
dc.subjectionic liquidsen_US
dc.subjectintelligent modelsen_US
dc.titleEvolving a least square support vector machine using real coded shuffled complex evolution for property estimation of aqueous ionic liquidsen_US
dc.typeArticleen_US
dc.date.dateAccepted2018-10-06-
dc.identifier.doihttps://doi.org/10.1016/j.tca.2018.10.005-
dc.relation.isPartOfThermochimica Acta-
pubs.publication-statusPublished-
pubs.volume670-
dc.identifier.eissn1872-762X-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dc.rights.holderElsevier-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2018 Elsevier B.V. All rights reserved..This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ (see: https://www.elsevier.com/about/policies/sharing).888.79 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons