Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29643
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAraujo, C-
dc.contributor.authorBeheshti, R-
dc.contributor.authorCastravet, A-M-
dc.contributor.authorJabbusch, K-
dc.contributor.authorMakarova, S-
dc.contributor.authorMazzon, E-
dc.contributor.authorViswanathan, N-
dc.date.accessioned2024-09-02T10:21:19Z-
dc.date.available2024-09-02T10:21:19Z-
dc.date.issued2024-07-29-
dc.identifierORCiD: Carolina Araujo https://orcid.org/0000-0002-7458-6652-
dc.identifierORCiD: Ana-Maria Castravet https://orcid.org/0000-0002-3633-4569-
dc.identifierORCiD: Kelly Jabbusch https://orcid.org/0000-0003-3893-0038-
dc.identifierORCiD: Svetlana Makarova https://orcid.org/0000-0003-4759-3563-
dc.identifierORCiD: Enrica Mazzon https://orcid.org/0000-0001-7137-8367-
dc.identifierORCiD: Nivedita Viswanathan https://orcid.org/0009-0007-3966-601X-
dc.identifier.citationAraujo, C. et al. (2024) 'The minimal projective bundle dimension and toric 2-Fano manifolds', Transactions of the American Mathematical Society, 0 (ahead of print), pp. 1 - [32]. doi: 10.1090/tran/9218.en_US
dc.identifier.issn0002-9947-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/29643-
dc.descriptionA preprint version of this article is available at: arXiv:2301.00883v2 [math.AG], https://arxiv.org/abs/2301.00883 under a CC BY-SA licence (https://creativecommons.org/licenses/by-sa/4.0/) . It has not been certified by peer review.-
dc.description.abstractMotivated by the problem of classifying toric 2-Fano manifolds, we introduce a new invariant for smooth projective toric varieties, the minimal projective bundle dimension. This invariant m(X)∈{1,…,dim(X)} captures the minimal degree of a dominating family of rational curves on X or, equivalently, the minimal length of a centrally symmetric primitive relation for the fan of X. We classify smooth projective toric varieties with m(X)≥dim(X)−2, and show that projective spaces are the only 2-Fano manifolds among smooth projective toric varieties with m(X)∈{1,dim(X)−2,dim(X)−1,dim(X)}.en_US
dc.description.sponsorshipCarolina Araujo was partially supported by CAPES/COFECUB, CNPq and FAPERJ Research Fellowships. Roya Beheshti was supported by NSF grant DMS-2101935. Ana-Maria Castravet was partially supported by the ANR 20-CE40-0023 grant FanoHK and the ANR-22-CE40-0009-01 grant FRACASSO. Enrica Mazzon was supported by the col-laborative research center SFB 1085 Higher Invariants - Interactions between Arithmetic Geometry and Global Analysis funded by the Deutsche Forschungsgemeinschaft. Nivedita Viswanathan was supported by the EPSRC New Horizons Grant No.EP/V048619/1.en_US
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.rightsCopyright © 2024 American Mathematical Society. For the purpose of open access, the author, Nivedita Viswanathan, has applied a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/) to any Author Accepted Manuscript version arising to meet UKRI terms and conditions (see: https://www.ams.org/publications/authors/ctp).-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.titleThe minimal projective bundle dimension and toric 2-Fano manifoldsen_US
dc.typeArticleen_US
dc.date.dateAccepted2024-04-02-
dc.identifier.doihttps://doi.org/10.1090/tran/9218-
dc.relation.isPartOfTransactions of the American Mathematical Society-
pubs.publication-statusPublished online-
dc.identifier.eissn1088-6850-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderAmerican Mathematical Society (published version); Authors (author accepted manuscript - the version on this institutional repository)-
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2024 American Mathematical Society. For the purpose of open access, the author, Nivedita Viswanathan, has applied a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/) to any Author Accepted Manuscript version arising to meet UKRI terms and conditions (see: https://www.ams.org/publications/authors/ctp).703.46 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons