Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/30001
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWen, T-
dc.contributor.authorLi, Z-
dc.contributor.authorWang, J-
dc.contributor.authorYang, F-
dc.contributor.authorZhu, M-
dc.contributor.authorLuo, Y-
dc.contributor.authorZhang, L-
dc.contributor.authorLiu, Z-
dc.contributor.authorQiu, D-
dc.contributor.authorYang, H-
dc.contributor.authorJi, S-
dc.date.accessioned2024-10-22T13:12:36Z-
dc.date.available2024-10-22T13:12:36Z-
dc.date.issued2024-07-25-
dc.identifierORCiD: Shouxun Ji https://orcid.org/0000-0002-8103-8638-
dc.identifiere2378930-
dc.identifier.citationWen, T. et al. (2024) 'CALPHAD aided design of a crack-free Al-Mg-Si-Ti alloy with high strength: heterogeneous nucleation and eutectic filling during additive manufacturing', Virtual and Physical Prototyping, 19 (1), e2378930, pp. 1 - 13. doi: 10.1080/17452759.2024.2378930.en_US
dc.identifier.issn1745-2759-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/30001-
dc.descriptionData availability statement: Data will be made available on request.en_US
dc.descriptionSupplemental material is available online at: https://www.tandfonline.com/doi/full/10.1080/17452759.2024.2378930# .-
dc.description.abstractThe CALPHAD (calculation of phase diagrams) method was applied to facilitate the design of a crack-free Al-Mg-Si-Ti alloy fabricated by laser-powder bed fusion (L-PBF). Calculation and alloy characterisation show that Ti addition at 0.77 wt.% can offer a synergic effect of increasing the heterogeneous nucleation rate and the growth restriction factor (Q) in the initial solidification stage. Meanwhile, the increase of Mg/Si ratio can promote the formation of Al/Mg2Si eutectics to provide excellent backfilling ability in the final solidification stage. As a result, the experimental Al-Mg-Si-Ti alloy significantly improve the crack susceptibility. Also, the Al-Mg-Si-Ti alloy with dislocation interaction of Al/Mg2Si eutectics and Al3Ti particles show an excellent ultimate tensile strength of 447.8 MPa and elongation of 9.1% under as-LPBFed condition.en_US
dc.description.sponsorshipNational Natural Science Foundation of China (grant number 52071343); Leading Innovation and Entrepreneurship Team of Zhejiang Province – Automotive Light Alloy Innovation Team (2022R01018).en_US
dc.format.extent1 - 13-
dc.format.mediumPrint-~Electronic-
dc.languageEngllish-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rightsAttribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectaluminium alloysen_US
dc.subjectmicrostructure evolutionen_US
dc.subjectmechanical propertiesen_US
dc.subjectCALPHAD lase powder-bed fusionen_US
dc.subjectcrack eliminationen_US
dc.titleCALPHAD aided design of a crack-free Al-Mg-Si-Ti alloy with high strength: heterogeneous nucleation and eutectic filling during additive manufacturingen_US
dc.typeArticleen_US
dc.date.dateAccepted2024-07-06-
dc.identifier.doihttps://doi.org/10.1080/17452759.2024.2378930-
dc.relation.isPartOfVirtual and Physical Prototyping-
pubs.issue1-
pubs.publication-statusPublished-
pubs.volume19-
dc.identifier.eissn1745-2767-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe Author(s)-
Appears in Collections:Brunel Centre for Advanced Solidification Technology (BCAST)

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.5.23 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons