Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/30015
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShakhovska, N-
dc.contributor.authorYakovyna, V-
dc.contributor.authorMysak, M-
dc.contributor.authorMitoulis, S-A-
dc.contributor.authorArgyroudis, S-
dc.contributor.authorSyerov, Y-
dc.date.accessioned2024-10-24T11:36:45Z-
dc.date.available2024-10-24T11:36:45Z-
dc.date.issued2024-10-11-
dc.identifierORCiD: Nataliya Shakhovska https://orcid.org/0000-0002-6875-8534-
dc.identifierORCiD: Vitaliy Yakovyna https://orcid.org/0000-0003-0133-8591-
dc.identifierORCiD: Stergios-Aristoteles Mitoulis https://orcid.org/0000-0001-7201-2703-
dc.identifierORCiD: Sotirios Argyroudis https://orcid.org/0000-0002-8131-3038-
dc.identifierORCiD: Yuriy Syerov https://orcid.org/0000-0002-5293-4791-
dc.identifier136-
dc.identifier.citationShakhovska, N. et al. (2024) 'Real-Time Monitoring of Road Networks for Pavement Damage Detection Based on Preprocessing and Neural Networks', Big Data and Cognitive Computing, 8 (10), 136, pp. 1 - 22. doi: 10.3390/bdcc8100136.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/30015-
dc.descriptionData Availability Statement: Datasets are available by link https://www.kaggle.com/datasets/dataclusterlabs/potholes-or-cracks-on-road-image-dataset, accessed on 10 October 2022. Mysak M., Yakovyna V., Shakhovska N. (2023). Pothiles and cracks on road video and image detection system (Version 1.1.1) [Computer software]. Software Heritage, https://github.com/MysakMaksym/pothole-detection.git, accessed on 14 June 2024.en_US
dc.description.abstractThis paper presents a novel multi-initialization model for recognizing road surface damage, e.g. potholes and cracks, on video using convolutional neural networks (CNNs) in real-time for fast damage recognition. The model is trained by the latest Road Damage Detection dataset, which includes four types of road damage. In addition, the CNN model is updated using pseudo-labeled images from semi-learned methods to improve the performance of the pavement damage detection technique. This study describes the use of the YOLO architecture and optimizes it according to the selected parameters, demonstrating high efficiency and accuracy. The results obtained can enhance the safety and efficiency of road pavement and, hence, its traffic quality and contribute to decision-making for the maintenance and restoration of road infrastructure.en_US
dc.description.sponsorshipNational Research Foundation of Ukraine, project #2021.01/0103; British Academy Fellowship RaR\100727 Horizon Europe project ZEBAI: Innovative methodologies for the design of Zero-Emission and cost-effective Buildings enhanced by Artificial Intelligence (Grant Agreement ID: 101138678).en_US
dc.format.extent1 - 22-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.rightsAttribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectpavementen_US
dc.subjectdamage detectionen_US
dc.subjectconvolutional neural networken_US
dc.subjectconvolutional neural networken_US
dc.subjectYOLO architectureen_US
dc.subjectmachine learningen_US
dc.subjectclassificationen_US
dc.subjectneural networksen_US
dc.subjectdata preprocessingen_US
dc.titleReal-Time Monitoring of Road Networks for Pavement Damage Detection Based on Preprocessing and Neural Networksen_US
dc.typeArticleen_US
dc.date.dateAccepted2024-10-08-
dc.identifier.doihttps://doi.org/10.3390/bdcc8100136-
dc.relation.isPartOfBig Data and Cognitive Computing-
pubs.issue10-
pubs.publication-statusPublished online-
pubs.volume8-
dc.identifier.eissn2504-2289-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe authors-
Appears in Collections:Dept of Civil and Environmental Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).11 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons