Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/30075
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerreira, FPV-
dc.contributor.authorJeong, SH-
dc.contributor.authorMansouri, E-
dc.contributor.authorShamass, R-
dc.contributor.authorTsavdaridis, KD-
dc.contributor.authorMartins, CH-
dc.contributor.authorDe Nardin, S-
dc.date.accessioned2024-11-09T18:21:21Z-
dc.date.available2024-11-09T18:21:21Z-
dc.date.issued2024-07-22-
dc.identifierORCiD: Felipe Piana Vendramell Ferreira https://orcid.org/0000-0001-8007-789X-
dc.identifierORCiD: Seong-Hoon Jeong https://orcid.org/0000-0001-6404-0632-
dc.identifierORCiD: Ehsan Mansouri https://orcid.org/0000-0003-2045-1960-
dc.identifierORCiD: Rabee Shamass https://orcid.org/0000-0002-7990-8227-
dc.identifierORCiD: Konstantinos Daniel Tsavdaridis https://orcid.org/0000-0001-8349-3979-
dc.identifierORCiD: Carlos Humberto Martins https://orcid.org/0000-0001-7342-5665-
dc.identifier2256-
dc.identifier.citationFerreira, F.P.V. et al. (2024) 'Five Machine Learning Models Predicting the Global Shear Capacity of Composite Cellular Beams with Hollow-Core Units', Buildings, 14 (7), 2256, pp. 1 - 22. doi: 10.3390/buildings14072256.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/30075-
dc.descriptionData Availability Statement: The data will be available upon request to the corresponding author.en_US
dc.description.abstractThe global shear capacity of steel–concrete composite downstand cellular beams with precast hollow-core units is an important calculation as it affects the span-to-depth ratios and the amount of material used, hence affecting the embodied CO2 calculation when designers are producing floor grids. This paper presents a reliable tool that can be used by designers to alter and optimise grip options during the preliminary design stages, without the need to run onerous calculations. The global shear capacity prediction formula is developed using five machine learning models. First, a finite element model database is developed. The influence of the opening diameter, web opening spacing, tee-section height, concrete topping thickness, interaction degree, and the number of shear studs above the web opening are investigated. Reliability analysis is conducted to assess the design method and propose new partial safety factors. The Catboost regressor algorithm presented better accuracy compared to the other algorithms. An equation to predict the shear capacity of composite cellular beams with hollow-core units is proposed using gene expression programming. In general, the partial safety factor for resistance, according to the reliability analysis, varied between 1.25 and 1.26.en_US
dc.description.sponsorshipNational Research Foundation of Korea (NRF) grant funded by the Korea government, (MSIT) (RS-2023-00278784); Inha University Research Grant.en_US
dc.format.extent1 - 22-
dc.format.mediumElectronic-
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.rightsAttribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectmachine learningen_US
dc.subjectcomposite floorsen_US
dc.subjecthollow-core unitsen_US
dc.subjectshear capacityen_US
dc.subjectreliability analysisen_US
dc.titleFive Machine Learning Models Predicting the Global Shear Capacity of Composite Cellular Beams with Hollow-Core Unitsen_US
dc.typeArticleen_US
dc.date.dateAccepted2024-07-17-
dc.identifier.doihttps://doi.org/10.3390/buildings14072256-
dc.relation.isPartOfBuildings-
pubs.issue7-
pubs.publication-statusPublished-
pubs.volume14-
dc.identifier.eissn2075-5309-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe authors-
Appears in Collections:Dept of Civil and Environmental Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).1.25 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons