Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/30313
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVerbeek, H-
dc.contributor.authorAyad, LAK-
dc.contributor.authorLoukides, G-
dc.contributor.authorPissis, SP-
dc.coverage.spatialFukuoka, Japan-
dc.date.accessioned2024-12-04T14:27:30Z-
dc.date.available2024-12-04T14:27:30Z-
dc.date.issued2024-06-18-
dc.identifierORCiD: Hilde Verbeek https://orcid.org/0000-0002-2399-3098-
dc.identifierORCiD: Lorraine A.K. Ayad https://orcid.org/0000-0003-0846-2616-
dc.identifierORCiD: Grigorios Loukides https://orcid.org/0000-0003-0888-5061-
dc.identifierORCiD: Solon P. Pissis https://orcid.org/0000-0002-1445-1932-
dc.identifier.citationVerbeek, H. et al. (2024) 'Minimizing the Minimizers via Alphabet Reordering', Leibniz International Proceedings in Informatics, LIPIcs, 296, pp. 28:1 - 28:13 (13). doi: 10.4230/LIPIcs.CPM.2024.28.en_US
dc.identifier.isbn978-3-95977-326-3-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/30313-
dc.descriptionConference paper presented at the 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024), Fukuoka, Japan, 25-27 Jun 2024.en_US
dc.description.abstractMinimizers sampling is one of the most widely-used mechanisms for sampling strings [Roberts et al., Bioinformatics 2004]. Let S = S[1]… S[n] be a string over a totally ordered alphabet Σ. Further let w ≥ 2 and k ≥ 1 be two integers. The minimizer of S[i..i+w+k-2] is the smallest position in [i,i+w-1] where the lexicographically smallest length-k substring of S[i..i+w+k-2] starts. The set of minimizers over all i ∈ [1,n-w-k+2] is the set ℳ_{w,k}(S) of the minimizers of S. We consider the following basic problem: Given S, w, and k, can we efficiently compute a total order on Σ that minimizes |ℳ_{w,k}(S)|? We show that this is unlikely by proving that the problem is NP-hard for any w ≥ 3 and k ≥ 1. Our result provides theoretical justification as to why there exist no exact algorithms for minimizing the minimizers samples, while there exists a plethora of heuristics for the same purpose.en_US
dc.description.sponsorshipVerbeek, Hilde: Supported by a Constance van Eeden Fellowship. Pissis, Solon P.: Supported by the PANGAIA and ALPACA projects that have received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreements No 872539 and 956229, respectively.en_US
dc.format.extent28:1 - 28:13 (13)-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherSchloss Dagstuhl – LZI GmbHen_US
dc.rightsAttribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.source35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)-
dc.source35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)-
dc.subjectsequence analysisen_US
dc.subjectminimizersen_US
dc.subjectalphabet reorderingen_US
dc.subjectfeedback arc seten_US
dc.titleMinimizing the Minimizers via Alphabet Reorderingen_US
dc.typeConference Paperen_US
dc.identifier.doihttps://doi.org/10.4230/LIPIcs.CPM.2024.28-
dc.relation.isPartOfLeibniz International Proceedings in Informatics, LIPIcs-
pubs.finish-date2024-06-27-
pubs.finish-date2024-06-27-
pubs.publication-statusPublished-
pubs.start-date2024-06-25-
pubs.start-date2024-06-25-
pubs.volume296-
dc.identifier.eissn1868-8969-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).1.1 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons