Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/30323
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao, M-
dc.contributor.authorWang, Z-
dc.contributor.authorWan, J-
dc.contributor.authorLu, G-
dc.contributor.authorLiu, W-
dc.date.accessioned2024-12-06T07:52:44Z-
dc.date.available2024-12-06T07:52:44Z-
dc.date.issued2024-08-24-
dc.identifierORCiD: Min Zhao https://orcid.org/0000-0002-3626-3975-
dc.identifierORCiD: Zidong Wang https://orcid.org/0000-0002-9576-7401-
dc.identifierORCiD: Weibo Liu https://orcid.org/0000-0002-8169-3261-
dc.identifier112425-
dc.identifier.citationZhao, M. et al. (2024) 'A novel neural network architecture utilizing parametric-logarithmic-modulus-based activation function: Theory, algorithm, and applications', Knowledge-Based Systems, 303, 112425, pp. 1 - 11. doi: 10.1016/j.knosys.2024.112425.en_US
dc.identifier.issn0950-7051-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/30323-
dc.descriptionData availability: Data will be made available on request.en_US
dc.description.abstractThis paper introduces a novel parametric-logarithmic-modulus-based activation function (PLM-AF) designed to significantly enhance the nonlinear expression capabilities of high-dimensional spectroscopy data. A one-dimensional CNN-LSTM (1D-CNN-BiLSTM) model is subsequently developed to capture long-term dependencies within glucose Raman spectroscopy. To the best of our knowledge, this is the first work to simultaneously optimize the predictive performance of the model from the perspectives of both network architecture and activation functions. The effectiveness of the model is comprehensively evaluated against state-of-the-art methods using a public Raman spectroscopy dataset. Compared to the sub-optimal glucose prediction models, the proposed model improves the training root mean square error (RMSE) by 41.89%. The improved prediction accuracy demonstrates that the proposed regression model with the novel PLM-AF can significantly facilitate non-invasive glucose concentration prediction, thereby advancing the auxiliary diagnosis and healthcare industry.en_US
dc.description.sponsorshipThis work was supported in part by the National Natural Science Foundation of China under Grant 62073180 and Nantong Natural Science Foundation of China under Grant JC2023073.en_US
dc.format.extent1 - 11-
dc.format.mediumPrint-Electronic-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectactivation functionsen_US
dc.subjectconvolutional neural networks (CNN)en_US
dc.subjectbidirectional long short-term memory (BiLSTM)en_US
dc.subjecthealthcareen_US
dc.subjectRaman spectroscopyen_US
dc.subjectglucose concentration predictionen_US
dc.titleA novel neural network architecture utilizing parametric-logarithmic-modulus-based activation function: Theory, algorithm, and applicationsen_US
dc.typeArticleen_US
dc.date.dateAccepted2024-08-22-
dc.identifier.doihttps://doi.org/10.1016/j.knosys.2024.112425-
dc.relation.isPartOfKnowledge-Based Systems-
pubs.publication-statusPublished-
pubs.volume303-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dc.rights.holderElsevier B.V.-
Appears in Collections:Dept of Computer Science Embargoed Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfEmbargoed until 24 August 2025. Copyright © 2024 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ ( https://www.elsevier.com/about/policies/sharing ).2.26 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons