Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/30802
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAl-Majali, BH-
dc.contributor.authorZobaa, AF-
dc.date.accessioned2025-02-23T09:26:36Z-
dc.date.available2025-02-23T09:26:36Z-
dc.date.issued2025-02-07-
dc.identifierORCiD: Bilal H. Al-Majali https://orcid.org/0000-0002-1365-4324-
dc.identifierORCiD: Ahmed F. Zobaa https://orcid.org/0000-0001-5398-2384-
dc.identifier126765-
dc.identifier.citationAl-Majali, B.H. and Zobaa, A.F. (2025) 'Analyzing bi-objective optimization Pareto fronts using square shape slope index and NSGA-II: A multi-criteria decision-making approach', Expert Systems with Applications, 272, 126765, pp. 1 - 16. doi: 10.1016/j.eswa.2025.126765.en_US
dc.identifier.issn0957-4174-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/30802-
dc.descriptionData availability: No data was used for the research described in the article.en_US
dc.description.abstractThis paper introduces the Square Shape Slope Index (SSSI), a novel post-optimization multi-criteria decision-making (MCDM) approach for analyzing Pareto fronts generated from bi-objective optimization problems. SSSI leverages multiple Utopia and Nadir points—guided by a user-defined priority scale—to form a dynamic square region around particular segments of the Pareto front. Within this region, slope-based evaluations are used to rank solutions based on user preferences and criteria. The method’s effectiveness is demonstrated through empirical tests on diverse benchmark functions and real-world scenarios, such as energy distribution and portfolio optimization, each encompassing various shapes and patterns of the Pareto front. In addition, SSSI is compared against established decision-making approaches both geometrically and analytically using different aggregation methods. To account for the stochastic nature of evolutionary algorithms, the Non-Dominated Sorting Genetic Algorithm (NSGA-II) is employed to generate Pareto fronts for each test function. Results confirm the robustness and adaptability of SSSI, offering a clear and flexible framework for balancing conflicting objectives in multi-objective decision-making contexts.en_US
dc.format.extent1 - 16-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsAttribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectMCDMen_US
dc.subjectPareto fronten_US
dc.subjectoptimizationen_US
dc.subjectevolutionary algorithmsen_US
dc.titleAnalyzing bi-objective optimization Pareto fronts using square shape slope index and NSGA-II: A multi-criteria decision-making approachen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2025.126765-
dc.relation.isPartOfExpert Systems with Applications-
pubs.publication-statusPublished-
pubs.volume272-
dc.identifier.eissn1873-6793-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-02-03-
dc.rights.holderCrown / The Author(s)-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCrown Copyright © 2025 Published by Elsevier Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).2.32 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons