Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/30922
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArslan, T-
dc.contributor.authorYu, K-
dc.date.accessioned2025-03-16T19:32:49Z-
dc.date.available2025-03-16T19:32:49Z-
dc.date.issued2025-02-19-
dc.identifierORCiD: Talha Arslan https://orcid.org/0000-0002-4630-4857-
dc.identifierORCiD: Keming Yu https://orcid.org/0000-0001-6341-8402-
dc.identifier.citationArslan, T. and Yu, K. (2025) 'The unit-Cauchy quantile regression model with variates observed on (0, 1): percentages, proportions, and fractions', Hacettepe Journal of Mathematics and Statistics, 0 (ahead of print), pp. 1 - 23. doi: 10.15672/hujms.1533205.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/30922-
dc.descriptionData availability. Enquiries about data availability should be directed to the authors.en_US
dc.description.abstractIn this study, a new parametric quantile regression model is introduced as an alternative to the beta regression and Kumaraswamy quantile regression model. The proposed quantile regression model is obtained by reparametrization of the unit-Cauchy distribution in terms of its quantiles. The model parameters are estimated using the maximum likelihood method. A Monte-Carlo simulation study is conducted to show the efficiency of the maximum likelihood estimation of the model parameters. The implementation of the proposed quantile regression model is shown by using real datasets. Quantile regression models based on unit-Weibull, unit generalized half normal, and unit Burr XII are also considered in the applications. The application results show that the proposed quantile regression model is preferable over its rivals when several comparison criteria are taken into account. In addition, the fitting plots indicate that the proposed quantile regression model fits extreme observations on the right tail better than its strong rivals, which is important in quantile regression modeling.en_US
dc.description.sponsorshipYu, Keming. There is no funding regarding this research work.en_US
dc.format.extent1 - 23-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherDergiPark Akademik on behalf of Hacettepe University-
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectquantile regressionen_US
dc.subjectMonte-Carlo simulationen_US
dc.subjectmaximum likelihooden_US
dc.subjectparametric modelen_US
dc.subjectunit-Cauchyen_US
dc.titleThe unit-Cauchy quantile regression model with variates observed on (0, 1): percentages, proportions, and fractionsen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.15672/hujms.1533205-
dc.relation.isPartOfHacettepe Journal of Mathematics and Statistics-
pubs.issue00-
pubs.publication-statusPublished online-
pubs.volume0-
dc.identifier.eissn2651-477X-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dcterms.dateAccepted2025-02-15-
dc.rights.holderHacettepe University-
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 Hacettepe University. Published by DergiPark Akademik on behalf of Hacettepe University. This is an open access article under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/).986.7 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons