Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31099
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhaghani, A-
dc.contributor.authorIvanov, A-
dc.contributor.authorMortazavi, M-
dc.date.accessioned2025-04-29T14:59:56Z-
dc.date.available2025-04-29T14:59:56Z-
dc.date.issued2025-04-24-
dc.identifierORCiD: Ali Khaghani https://orcid.org/0000-0003-1998-0275-
dc.identifierORCiD: Atanas Ivanov https://orcid.org/0000-0001-8041-4323-
dc.identifierArticle number 499-
dc.identifier.citationKhaghani A., Ivanov, A. and Mortazavi, M. (2025) 'Advanced MMC-Based Hydrostatic Bearings for Enhanced Linear Motion in Ultraprecision and Micromachining Applications', Micromachines, 16 (5), 499, pp. 1 - 12. doi: 10.3390/mi16050499.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31099-
dc.descriptionData Availability Statement: The data are unavailable due to privacy and ethical restrictions.en_US
dc.descriptionAcknowledgments: The authors are grateful for continuous support from Brunel University London.-
dc.description.abstractThis study investigates the impact of material selection on the performance of linear slideways in ultraprecision machines used for freeform surface machining. The primary objective is to address challenges related to load-bearing capacity and limited bandwidth in slow tool servo (STS) techniques. Multi-body dynamic (MBD) simulations are conducted to evaluate the performance of two materials, alloy steel and metal matrix composite (MMC), within the linear slideway system. Key performance parameters, including acceleration, velocity, and displacement, are analyzed to compare the two materials. The findings reveal that MMC outperforms alloy steel in acceleration, velocity, and displacement, demonstrating faster response times and greater linear displacement, which enhances the capabilities of STS-based ultraprecision machining. This study highlights the potential of utilizing lightweight materials, such as MMC, to optimize the performance and efficiency of linear slideways in precision engineering applications.en_US
dc.description.sponsorshipThis research received no external funding.en_US
dc.format.extent1 - 12-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.rightsAttribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectultraprecision machiningen_US
dc.subjectmicromachiningen_US
dc.subjectmicropositioningen_US
dc.subjectlinear direct actuatoren_US
dc.subjectdynamicsen_US
dc.titleAdvanced MMC-Based Hydrostatic Bearings for Enhanced Linear Motion in Ultraprecision and Micromachining Applicationsen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-04-22-
dc.identifier.doihttps://doi.org/10.3390/mi16050499-
dc.relation.isPartOfMicromachines-
pubs.issue5-
pubs.publication-statusPublished online-
pubs.volume16-
dc.identifier.eissn2072-666X-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-04-22-
dc.rights.holderThe authors-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).1.41 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons