Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31215
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWan, F-
dc.contributor.authorWang, T-
dc.contributor.authorWang, K-
dc.contributor.authorSi, Y-
dc.contributor.authorFondrevelle, J-
dc.contributor.authorDu, S-
dc.contributor.authorDuclos, A-
dc.date.accessioned2025-05-12T12:29:36Z-
dc.date.available2025-05-12T12:29:36Z-
dc.date.issued2025-05-07-
dc.identifierORCiD: Kezhi Wang https://orcid.org/0000-0001-8602-0800-
dc.identifierORCiD: Julien Fondrevelle https://orcid.org/0000-0002-8505-0212-
dc.identifierArticle number: 103151-
dc.identifier.citationWan, F. et al. (2025) 'Surgery scheduling based on large language models', Artificial Intelligence in Medicine, 166, 103151, pp. 1 - 17. doi: 10.1016/j.artmed.2025.103151.en_US
dc.identifier.issn0933-3657-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31215-
dc.description.abstractLarge Language Models (LLMs) have shown remarkable potential in various fields. This study explores their application in solving multi-objective combinatorial optimization problems–surgery scheduling problem. Traditional multi-objective optimization algorithms, such as the Non-dominated Sorting Genetic Algorithm II (NSGA-II), often require domain expertise for designing precise operators. Here, we propose LLM-NSGA, where LLMs act as evolutionary optimizers, performing selection, crossover, and mutation operations. Results show that for 40 cases, LLMs can independently generate high-quality solutions from prompts. As problem size increases, LLM-NSGA outperformed traditional approaches like NSGA-II and MOEA/D, achieving average improvements of 5.39 %, 80 %, and 0.42 % in three objectives. While LLM-NSGA provided similar results to EoH, another LLM-based method, it outperformed EoH in overall resource allocation. Additionally, we applied LLMs for hyperparameter optimization, comparing them with Bayesian Optimization and Ant Colony Optimization (ACO). LLMs reduced runtime by an average of 23.68 %, and their generated parameters, validated with NSGA-II, produced better surgery scheduling solutions. This demonstrates that LLMs can not only help traditional algorithms find better solutions but also optimize their parameters efficiently.en_US
dc.description.sponsorshipThis work is partially supported by HarmonicAI - Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health distributed by European Commission (Call: HORIZON-MSCA-2022-SE-01-01, Project number: 101131117 and UKRI grant number EP/Y03743X/1). The authors sincerely acknowledge the financial support (n°23 015699 01) provided by the Auvergne Rhône-Alpes region.en_US
dc.format.extent1 - 17-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectsurgery schedulingen_US
dc.subjectlarge language modelsen_US
dc.subjectcombinatorial optimizationen_US
dc.subjectmulti-objectiveen_US
dc.subjecthyperparameter optimizationen_US
dc.titleSurgery scheduling based on large language modelsen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-05-01-
dc.identifier.doihttps://doi.org/10.1016/j.artmed.2025.103151-
dc.relation.isPartOfArtificial Intelligence in Medicine-
pubs.publication-statusAccepted-
pubs.volume166-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dcterms.dateAccepted2025-05-01-
dc.rights.holderElsevier B.V.-
Appears in Collections:Dept of Computer Science Embargoed Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfEmbargoed until 7 May 2026. Copyright © 2025 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ (see: https://www.elsevier.com/about/policies/sharing).1.31 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons