Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31245
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBranescu, M-
dc.contributor.authorSwift, S-
dc.contributor.authorTucker, A-
dc.contributor.authorCounsell, S-
dc.contributor.editorMantas, J-
dc.contributor.editorHasman, A-
dc.contributor.editorZoulias, E-
dc.contributor.editorKaritis, K-
dc.contributor.editorGallos, P-
dc.contributor.editorDiomidous, M-
dc.contributor.editorZogas, S-
dc.contributor.editorCharalampidou, M-
dc.date.accessioned2025-05-15T11:14:07Z-
dc.date.available2025-05-15T11:14:07Z-
dc.date.issued2025-04-08-
dc.identifierORCiD: Stephen Swift https://orcid.org/0000-0001-8918-3365-
dc.identifierORCiD: Allan Tucker https://orcid.org/0000-0001-5105-3506-
dc.identifierORCiD: Steve Counsell https://orcid.org/0000-0002-2939-8919-
dc.identifier.citationBranescu, M. et al. (2025) 'Extracting Regions of Interest and Selective Feature Application in Leukaemia Image Classification', in: J. Mantas et al. (eds.) Envisioning the Future of Health Informatics and Digital Health. Amsterdam: IOS Press, pp. 106 - 110. doi: 10.3233/SHTI250058.en_US
dc.identifier.isbn978-1-64368-590-8 (ebk)-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31245-
dc.description.abstractEvaluating the blood smear test images remains the main route of detecting the type of leukaemia, accurate diagnosis is fundamental in providing effective treatment. The changes in the structure of the white blood cells present different morphological characteristics translated into extractable features. This paper explores techniques for manipulating a reduced dataset to increase the classification with CNN (Convolutional neural Network) and feature extraction. Extracting ROI (Regions of Interest) divides the leukaemia images into points of interest respective white blood cells, expanding the dataset an important factor for CNN’s performance. Segmenting the initial dataset into ROI through computation after applying Otsu thresholding results in a new dataset of images. The two datasets are analysed, feature extraction performs better on the initial dataset while CNN’s accuracy is higher for ROI images. Further steps will divide the images into filtered regions of interest where more specific characteristics are extracted to increase the accuracy.en_US
dc.format.extent106 - 110-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherIOS Pressen_US
dc.relation.ispartofseriesStudies in Health Technology and Informatics;Volume 323-
dc.relation.urihttps://www.iospress.com/catalog/books/envisioning-the-future-of-health-informatics-and-digital-health-
dc.rightsAttribution Non-Commercial License 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/deed.en_US-
dc.subjectHaralick texture featuresen_US
dc.subjectfeatureen_US
dc.subjectconvolutional neural networken_US
dc.subjectOtsu thresholding methoden_US
dc.subjectregions of interesten_US
dc.titleExtracting Regions of Interest and Selective Feature Application in Leukaemia Image Classificationen_US
dc.typeBook chapteren_US
dc.identifier.doihttps://doi.org/10.3233/SHTI250058-
dc.relation.isPartOfStudies in health technology and informatics-
pubs.publication-statusPublished-
pubs.volume323-
dc.identifier.eissn1879-8365-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc/4.0/legalcode.en_US-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Authors. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).989.04 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons