Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31346
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, A-
dc.contributor.authorSun, Y-
dc.contributor.authorZhao, X-
dc.contributor.authorGalindo Esparza, RP-
dc.contributor.authorChen, K-
dc.contributor.authorXiang, Y-
dc.contributor.authorZhao, T-
dc.contributor.authorZhang, M-
dc.coverage.spatialSingapore-
dc.date.accessioned2025-05-29T07:56:39Z-
dc.date.available2025-05-29T07:56:39Z-
dc.date.issued2023-12-06-
dc.identifierORCiD: Rosella Paulina Galindo Esparza https://orcid.org/0000-0003-2552-0224-
dc.identifier.citationChen, A. et al. (2025) 'Improving Low-resource Question Answering by Augmenting Question Information', Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore / Online, 6-10 December, pp. 10413 - 10420. doi: 10.18653/v1/2023.findings-emnlp.699.en_US
dc.identifier.isbn979-8-89176-061-5-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31346-
dc.description.abstractIn the era of large models, low-resource question-answering tasks lag, emphasizing the importance of data augmentation - a key research avenue in natural language processing. The main challenges include leveraging the large model’s internal knowledge for data augmentation, determining which QA data component - the question, passage, or answer - benefits most from augmentation, and retaining consistency in the augmented content without inducing excessive noise. To tackle these, we introduce PQQ, an innovative approach for question data augmentation consisting of Prompt Answer, Question Generation, and Question Filter. Our experiments reveal that ChatGPT underperforms on the experimental data, yet our PQQ method excels beyond existing augmentation strategies. Further, its universal applicability is validated through successful tests on high-resource QA tasks like SQUAD1.1 and TriviaQA.en_US
dc.description.sponsorshipThis work was partially supported by the Na- tional Natural Science Foundation of China (Grant No.62376075, No.62276077, No.61972436, and No.62106115) and by Shenzhen College Stability Support Plan (Grant GXWD20220811170358002 and GXWD20220817123150002).en_US
dc.format.extent10413 - 10420-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherAssociation for Computational Linguistics (ACL)en_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceThe 2023 Conference on Empirical Methods in Natural Language Processing-
dc.sourceThe 2023 Conference on Empirical Methods in Natural Language Processing-
dc.titleImproving Low-resource Question Answering by Augmenting Question Informationen_US
dc.typeConference Paperen_US
dc.date.dateAccepted2023-12-06-
dc.identifier.doihttps://doi.org/10.18653/v1/2023.findings-emnlp.699-
dc.relation.isPartOfFindings of the Association for Computational Linguistics: EMNLP 2023-
pubs.finish-date2023-12-10-
pubs.finish-date2023-12-10-
pubs.publication-statusPublished-
pubs.start-date2023-12-06-
pubs.start-date2023-12-06-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2023-10-06-
dc.rights.holderAssociation for Computational Linguistics-
Appears in Collections:Brunel Design School Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2023 Association for Computational Linguistics. Materials published in or after 2016 are licensed on a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).1.27 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons