Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31369
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXu, Y-
dc.contributor.authorLei, T-
dc.contributor.authorNing, H-
dc.contributor.authorLin, S-
dc.contributor.authorLiu, T-
dc.contributor.authorGong, M-
dc.contributor.authorNandi, AK-
dc.date.accessioned2025-06-01T12:18:36Z-
dc.date.available2025-06-01T12:18:36Z-
dc.date.issued2025-03-05-
dc.identifierORCiD: Yetong Xu https://orcid.org/0009-0008-9290-2023-
dc.identifierORCiD: Tao Lei https://orcid.org/0000-0002-2104-9298-
dc.identifierORCiD: Hailong Ning https://orcid.org/0000-0001-8375-1181-
dc.identifierORCiD: Shaoxiong Lin https://orcid.org/0009-0005-0947-0791-
dc.identifierORCiD: Tongfei Liu https://orcid.org/0000-0003-1394-4724-
dc.identifierORCiD: Maoguo Gong https://orcid.org/0000-0002-0415-8556-
dc.identifierORCiD: Asoke K. Nandi https://orcid.org/0000-0001-6248-2875-
dc.identifier.citationXu, Y. et al. (2025) 'From Macro to Micro: A Lightweight Interleaved Network for Remote Sensing Image Change Detection', IEEE Transactions on Geoscience and Remote Sensing, 63, pp. 1 - 14. doi: 10.1109/TGRS.2025.3548562.en_US
dc.identifier.issn0196-2892-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31369-
dc.description.abstractAutomatic polyp segmentation is a crucial technique of computer-aided clinical diagnosis. However, some current polyp segmentation methods cannot accurately extract polyps from colonoscopy images due to the diversity of polyp shapes and sizes, as well as the blurry boundaries caused by the adhesion between polyps and surrounding tissues. To address this issue, we propose a multiscale decoupled expectation-maximization (EM) attention, namely MSD-EMA. There are two advantages of MSD-EMA. First, we design the decoupled EM attention, which decouples attention weights into the sum of pairwise term representing interregional features and unary term representing salient boundary features, thereby extracting boundary features between polyps and surrounding tissues while reducing computational complexity. Second, we propose the parallel collaborative strategy (PCS), which enables MSD-EMA to simultaneously extract sparse and dense feature maps using lower computational complexity. Sparse features are suitable for segmenting small polyps due to filtering out noise interference. Dense features are suitable for capturing large polyps that contain more location information. Comparative experiments are conducted with currently excellent polyp segmentation networks on five publicly available datasets, and the experimental results demonstrate that MSD-EMA can effectively improve polyp segmentation performance. Moreover, MSD-EMA is a plug-and-play module that can be applied to other types of segmentation tasks. The source code is available at https://github.com/EmarkZOU/MSD-EMA.en_US
dc.description.sponsorship10.13039/501100001809-National Natural Science Foundation of China Program (Grant Number: 62271296, 62201452, 62201334 and 62301302); 10.13039/100014472-Scientific Research Program; 10.13039/501100009103-Education Department of Shaanxi Province (Grant Number: 23JP014 and 23JP022).en_US
dc.format.extent1 - 14-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectchange detection (CD)en_US
dc.subjectlightweighten_US
dc.subjectremote sensing (RS) imageen_US
dc.subjecttransformeren_US
dc.titleFrom Macro to Micro: A Lightweight Interleaved Network for Remote Sensing Image Change Detectionen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-03-03-
dc.identifier.doihttps://doi.org/10.1109/TGRS.2025.3548562-
dc.relation.isPartOfIEEE Transactions on Geoscience and Remote Sensing-
pubs.publication-statusPublished-
pubs.volume63-
dc.identifier.eissn1558-0644-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-03-03-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/5.42 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons