Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31827
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMa, Q-
dc.contributor.authorHao, T-
dc.contributor.authorFeng, T-
dc.contributor.authorQiao, G-
dc.contributor.authorNandi, AK-
dc.contributor.authorLv, C-
dc.date.accessioned2025-08-25T17:06:37Z-
dc.date.available2025-08-25T17:06:37Z-
dc.date.issued2025-07-08-
dc.identifierORCiD: Tong Hao https://orcid.org/0000-0003-0177-6006-
dc.identifierORCiD: Tiantian Feng https://orcid.org/0000-0003-0345-0106-
dc.identifierORCiD: Gang Qiao https://orcid.org/0000-0002-2010-6238-
dc.identifierORCiD: Asoke K. Nandi https://orcid.org/0000-0001-6248-2875-
dc.identifierArticle number: 5106116-
dc.identifier.citationMa, Q. et al. (2025) 'Automated Prediction of Gamburtsev Subglacial Lakes in East Antarctica With Optimized Stacking Ensemble Learning', IEEE Transactions on Geoscience and Remote Sensing, 63, 5106116, pp. 1 - 16. doi: 10.1109/TGRS.2025.3587133.en_US
dc.identifier.issn0196-2892-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31827-
dc.description.abstractThe development in machine learning (ML) technology has brought new horizons for the prediction of subglacial lakes (SLs) using radio-echo sounding (RES) data, offering fresh perspectives toward the automated identification of SLs. Nonetheless, the inherent data imbalance across various classes within the dataset presents significant analytical challenges. To address this limitation, the artificial bee colony (ABC) optimization algorithm is introduced to automatically predict SLs in Gamburtsev Province in East Antarctica, using an optimized stacking ensemble learning approach. The proposed method predicts SLs by using five representative features selected through importance and correlation analyses of eight features derived from RES data. The experimental outcomes demonstrate the superiority of this method in overcoming the significant imbalance of RES data, successfully identifying known lakes in the validation dataset. Furthermore, this study summarizes an inventory of SLs across the Gamburtsev subglacial mountains in East Antarctica, and a total of 55 new candidate SLs with lengths ranging from 108 to 38130 m have been predicted using our novel method. The source code is publicly available at https://github.com/vivian-ma97/ABC-Stacking-for-Subglacial-Lakesen_US
dc.description.sponsorship10.13039/501100012166-National Key Research and Development Program of China (Grant Number: 2021YFB3900105); 10.13039/501100012226-Fundamental Research Funds for the Central Universities; University of Kansas, NSF (Grant Number: 0424589); National Aeronautics and Space Administration (NASA) Operation IceBridge (Grant Number: NNX16AH54G).en_US
dc.format.extent1 - 16-
dc.format.mediumPrint-Electronic-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectAntarcticaen_US
dc.subjectensemble learningen_US
dc.subjectfeature extractionen_US
dc.subjectradio echo soundingen_US
dc.subjectsubglacial lakesen_US
dc.titleAutomated Prediction of Gamburtsev Subglacial Lakes in East Antarctica With Optimized Stacking Ensemble Learningen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-06-24-
dc.identifier.doihttps://doi.org/10.1109/TGRS.2025.3587133-
dc.relation.isPartOfIEEE Transactions on Geoscience and Remote Sensing-
pubs.publication-statusPublished-
pubs.volume63-
dc.identifier.eissn1558-0644-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dcterms.dateAccepted2025-06-24-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/5.92 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons