Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31833
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMhawi, DN-
dc.contributor.authorOleiwi, HW-
dc.contributor.authorAl-Raweshidy, H-
dc.date.accessioned2025-08-26T12:06:57Z-
dc.date.available2025-08-26T12:06:57Z-
dc.date.issued2025-07-26-
dc.identifierORCiD: Doaa N. Mhawi https://orcid.org/0000-0002-0892-8765-
dc.identifierORCiD: Hamed Al-Raweshidy https://orcid.org/0000-0002-3702-8192-
dc.identifierArticle number: 2983-
dc.identifier.citationMhawi, D.N., Oleiwi, H.W. and Al-Raweshidy, H. (2025) 'Towards Intelligent Threat Detection in 6G Networks Using Deep Autoencoder', Electronics, 14 (15), 2983, pp. 1 - 17. doi: 10.3390/electronics14152983.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31833-
dc.descriptionData Availability Statement: The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.en_US
dc.description.abstractThe evolution of sixth-generation (6G) wireless networks introduces a complex landscape of cybersecurity challenges due to advanced infrastructure, massive device connectivity, and the integration of emerging technologies. Traditional intrusion detection systems (IDSs) struggle to keep pace with such dynamic environments, often yielding high false alarm rates and poor generalization. This study proposes a novel and adaptive IDS that integrates statistical feature engineering with a deep autoencoder (DAE) to effectively detect a wide range of modern threats in 6G environments. Unlike prior approaches, the proposed system leverages the DAE’s unsupervised capability to extract meaningful latent representations from high-dimensional traffic data, followed by supervised classification for precise threat detection. Evaluated using the CSE-CIC-IDS2018 dataset, the system achieved an accuracy of 86%, surpassing conventional ML and DL baselines. The results demonstrate the model’s potential as a scalable and upgradable solution for securing next-generation wireless networks.en_US
dc.description.sponsorshipThis research received no external funding.en_US
dc.format.extent1 - 17-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject6G wireless communicationsen_US
dc.subjectcybersecurityen_US
dc.subjectdeep learningen_US
dc.subjectdeep autoencoderen_US
dc.subjectintrusion detection systemsen_US
dc.subjectmachine learningen_US
dc.titleTowards Intelligent Threat Detection in 6G Networks Using Deep Autoencoderen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-07-23-
dc.identifier.doihttps://doi.org/10.3390/electronics14152983-
dc.relation.isPartOfElectronics-
pubs.issue15-
pubs.publication-statusPublished-
pubs.volume14-
dc.identifier.eissn2079-9292-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-07-23-
dc.rights.holderThe authors-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).3.65 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons