Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31899
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFernando, K-
dc.contributor.authorSchindler, TI-
dc.date.accessioned2025-09-02T16:45:58Z-
dc.date.available2025-09-02T16:45:58Z-
dc.date.issued2025-08-12-
dc.identifierORCiD: Kasun Fernando https://orcid.org/0000-0003-1489-9566-
dc.identifierORCiD: Tanka I. Schindler https://orcid.org/0000-0002-9056-8884-
dc.identifier.citationFernando, K. and Schindler, T.I. (2025) 'Limit theorems for a class of unbounded observables with an application to ‘Sampling the Lindelöf hypothesis’', Ergodic Theory and Dynamical Systems,0 (ahead of print), pp. 1 - 59. doi: 10.1017/etds.2025.10203.en_US
dc.identifier.issn0143-3857-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31899-
dc.descriptionMSC classification: Primary: 37A50: Relations with probability theory and stochastic processes Secondary: 60F05: Central limit and other weak theorems 11M06: zeta(s) and L(s,chi)en_US
dc.description.abstractWe prove the central limit theorem (CLT), the first-order Edgeworth expansion and a mixing local central limit theorem (MLCLT) for Birkhoff sums of a class of unbounded heavily oscillating observables over a family of full-branch piecewise C^2 expanding maps of the interval. As a corollary, we obtain the corresponding results for Boolean-type transformations on \mathbb {R}. The class of observables in the CLT and the MLCLT on \mathbb {R} include the real part, the imaginary part and the absolute value of the Riemann zeta function. Thus obtained CLT and MLCLT for the Riemann zeta function are in the spirit of the results of Lifschitz & Weber [Sampling the Lindelöf hypothesis with the Cauchy random walk. Proc. Lond. Math. Soc. (3) 98 (2009), 241–270] and Steuding [Sampling the Lindelöf hypothesis with an ergodic transformation. RIMS Kôkyûroku Bessatsu B34 (2012), 361–381] who have proven the strong law of large numbers for sampling the Lindelöf hypothesis.en_US
dc.description.sponsorship...en_US
dc.format.extent1 - 59-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoenen_US
dc.publisherCambridge University Press (CUP)en_US
dc.subjectcentral limit theoremen_US
dc.subjectEdgeworth expansionen_US
dc.subjectunbounded observablesen_US
dc.subjectLindelöf hypothesisen_US
dc.subjectquasicompact transfer operatorsen_US
dc.titleLimit theorems for a class of unbounded observables with an application to ‘Sampling the Lindelöf hypothesis’en_US
dc.typeArticleen_US
dc.date.dateAccepted2025-07-07-
dc.identifier.doihttps://doi.org/10.1017/etds.2025.10203-
dc.relation.isPartOfErgodic Theory and Dynamical Systems-
pubs.publication-statusPublished online-
dc.identifier.eissn1469-4417-
dcterms.dateAccepted2025-07-07-
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf658.29 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.