Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31947
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Y-
dc.contributor.authordel Río Chanona, EA-
dc.contributor.authorQuintanilla, P-
dc.date.accessioned2025-09-09T08:01:32Z-
dc.date.available2025-09-09T08:01:32Z-
dc.date.issued2025-06-23-
dc.identifierORCiD: Paulina Quintanilla https://orcid.org/0000-0002-7717-0556-
dc.identifier.citationWang, Y., del Río Chanona, E.A. and Quintanilla, P. (2025) 'Gaussian Process Nonlinear Model Predictive Control for Online Partially Observable Systems: An Application to Froth Flotation', Industrial and Engineering Chemistry Research, 64 (26), pp. 13307 - 13322. doi: 10.1021/acs.iecr.5c00660.en_US
dc.identifier.issn0888-5885-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31947-
dc.descriptionSupporting Information is available online at: https://pubs.acs.org/doi/10.1021/acs.iecr.5c00660#_i71 .en_US
dc.description.abstractThis paper presents a nonlinear model predictive control (NMPC) framework employing Gaussian processes (GPs) for application in froth flotation processes under online partial observability. Froth flotation, a critical process in mineral processing, involves complex, nonlinear dynamics and unmeasured variables, making traditional control methods challenging to implement. In this work, we build a data-driven control strategy by training GP-based state-space models on data generated from a physics-based model. These GP models are then integrated into an NMPC architecture where only a subset of the process states is observable online. The GP-MPC controller accounts for uncertainty and disturbances by predicting both the mean and variance of system dynamics, enabling robust optimization over a finite horizon. Results demonstrate a 20% reduction in the concentration of valuable minerals in the tailings compared to traditional control methods, while achieving consistent operation throughout the process. The framework effectively handles noise and disturbances, with the partially observable GP-MPC achieving consistent set point tracking within a 5% error margin, and reduces deviations from target values by approximately 15%. The framework also meets real-time constraints, making it well suited for complex, data-driven process control applications.en_US
dc.format.extent13307 - 13322-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectatmospheric chemistryen_US
dc.subjectcomputational chemistryen_US
dc.subjectmineralsen_US
dc.subjectoptimizationen_US
dc.subjectseparation scienceen_US
dc.titleGaussian Process Nonlinear Model Predictive Control for Online Partially Observable Systems: An Application to Froth Flotationen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-06-11-
dc.identifier.doihttps://doi.org/10.1021/acs.iecr.5c00660-
dc.relation.isPartOfIndustrial and Engineering Chemistry Research-
pubs.issue26-
pubs.publication-statusPublished-
pubs.volume64-
dc.identifier.eissn1520-5045-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-06-11-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Chemical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.10.35 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons