Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31968
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGobio-Thomas, LB-
dc.contributor.authorPapananias, M-
dc.contributor.authorDarwish, M-
dc.contributor.authorStojceska, V-
dc.coverage.spatialMadrid, Spain-
dc.date.accessioned2025-09-10T12:53:28Z-
dc.date.available2025-09-10T12:53:28Z-
dc.date.issued2024-10-30-
dc.identifierORCiD: Lisa Baindu Gobio-Thomas https://orcid.org/0009-0007-8158-1896-
dc.identifierORCiD: Moschos Papananias https://orcid.org/0000-0001-7121-9681-
dc.identifierORCiD: Mohamed Darwish https://orcid.org/0000-0002-9495-861X-
dc.identifierORCiD: Valentina Stojceska https://orcid.org/0000-0002-4117-2074-
dc.identifier.citationGobio-Thomas, L.B. et al. (2024) 'The Use of Machine Learning In Assessing Future Sustainability of Newly Developed Solar Thermal Systems', Proceedings of the World Conference on Climate Change and Global Warming, 2024, 1 (1), pp. 44 - 58. doi: 10.33422/ccgconf.v1i1.346.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31968-
dc.description.abstractAn artificial neural network (ANN) model developed in MATLAB was used to predict the environmental performance of an innovative solar thermal system, ASTEP (Application of Solar Energy to Industrial Processes) over a 30-year period. The system was applied to the industrial processes of two end-users, Mandrekas (MAND) and Arcelor Mittal (AMTP). The ASTEP system was designed to supply thermal energy up to 400°C and consist of three main components: a novel rotary Fresnel Sundial, thermal energy storage (TES) and a control system. The actual GHG emissions of the ASTEP system and a solar thermal plant as presented in the literature were used to evaluate the ability of the ANN model to predict GHG emissions. The actual and predicted emissions were compared to assess the accuracy of the model. Validation results showed a difference of 2.13 kgCO2eq/kWh for AMTP’s ASTEP system, 2.43 kgCO2eq/kWh for MAND’s ASTEP system and 0.32 kgCO2eq/kWh for a third solar thermal plant. These findings indicate that the ANN model could be considered as an effective tool in predicting GHG emissions for solar thermal plants allowing the industry to evaluate their environmental performance and adopt measures to reduce their impact.en_US
dc.description.sponsorshipThis research is funded by the EU Horizon 2020 research and innovation programme, Application of Solar Energy in Industrial processes (ASTEP), grant number 884411.en_US
dc.format.extent44 - 58-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherDiamond Scientific Publishing / Mokslinės Leidybos Deimantasen_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.source4th World Conference on Climate Change & Global Warming-
dc.source4th World Conference on Climate Change & Global Warming-
dc.subjectGHG emissionsen_US
dc.subjectenvironmental impacten_US
dc.subjectmachine learningen_US
dc.subjectsolar thermal plantsen_US
dc.subjectartificial neural network (ANN) regressionen_US
dc.titleThe Use of Machine Learning In Assessing Future Sustainability of Newly Developed Solar Thermal Systemsen_US
dc.typeConference Paperen_US
dc.date.dateAccepted2024-04-24-
dc.identifier.doihttps://doi.org/10.33422/ccgconf.v1i1.346-
dc.relation.isPartOfProceedings of the World Conference on Climate Change and Global Warming-
pubs.finish-date2024-04-28-
pubs.finish-date2024-04-28-
pubs.issue1-
pubs.publication-statusPublished online-
pubs.start-date2024-04-26-
pubs.start-date2024-04-26-
pubs.volume1-
dc.identifier.eissn3030-0703-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2024-04-24-
dc.rights.holderAuthor(s)-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers
Dept of Electronic and Electrical Engineering Research Papers
Institute of Energy Futures
Institute of Materials and Manufacturing

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2024 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).525.39 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons