Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32028
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXu, P-
dc.contributor.authorLei, Y-
dc.contributor.authorWang, Z-
dc.contributor.authorLi, N-
dc.contributor.authorCai, X-
dc.contributor.authorFeng, K-
dc.date.accessioned2025-09-23T14:32:15Z-
dc.date.available2025-09-23T14:32:15Z-
dc.date.issued2025-03-04-
dc.identifierORCiD: Pengcheng Xu https://orcid.org/0000-0002-4393-4511-
dc.identifierORCiD: Zidong Wang https://orcid.org/0000-0002-9576-7401-
dc.identifierORCiD: Xiao Cai https://orcid.org/0000-0003-1494-9578-
dc.identifierArticle number: 112541-
dc.identifier.citationXu, P. et al. (2025) 'A self-data-driven approach for online remaining useful life prediction of machinery using a recursive update strategy', Mechanical Systems and Signal Processing, 229, 112541, pp. 1 - 15. doi: 10.1016/j.ymssp.2025.112541.en_US
dc.identifier.issn0888-3270-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32028-
dc.descriptionData availability: Data will be made available on request.en_US
dc.description.abstractSelf-data-driven remaining useful life (RUL) prediction of machinery has gained significant attention in engineering due to its potential to reduce dependency on extensive training data during the prediction process. However, existing self-data-driven methods typically necessitate the storage and reuse of entire historical degradation data for updating prediction models, which limits their applicability in online and real-time scenarios. To overcome this limitation, this paper proposes a self-data-driven method for online RUL prediction using a recursive update strategy. Unlike conventional methods, the proposed recursive update strategy updates model parameters and selects the optimal model based on the latest monitoring data. A model base consisting of various degradation functions is initially established. During online prediction, model parameters are continuously updated in real-time using a sequential Bayesian algorithm, while the optimal degradation model is automatically identified using the proposed recursive Bayesian information criterion (RBIC). The effectiveness of this approach is validated through both simulation and experimental case studies. The results demonstrate that the proposed method not only achieves higher prediction accuracy but also requires less computation time compared to existing methods in online applications.en_US
dc.description.sponsorshipThis work was supported by the National Natural Science Foundation of China (52025056, 52375121 and 52435003), “Scientists & Engineers” Team Construction Project of Shaanxi Qinchuangyuan (2022KXJ-028), Shaanxi Science and Technology Innovation Team (2023-CX-TD-15), and Fundamental Research Funds for the Central Universities.en_US
dc.format.extent1 - 15-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International-
dc.rights.uriLicense (https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectself-data-driven methoden_US
dc.subjectRUL predictionen_US
dc.subjectlatest monitoring dataen_US
dc.subjectrecursive update strategyen_US
dc.subjectonline scenariosen_US
dc.titleA self-data-driven approach for online remaining useful life prediction of machinery using a recursive update strategyen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-02-26-
dc.identifier.doihttps://doi.org/10.1016/j.ymssp.2025.112541-
dc.relation.isPartOfMechanical Systems and Signal Processing-
pubs.publication-statusPublished-
pubs.volume229-
dc.identifier.eissn1096-1216-
dc.rights.licenseLicense (https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dcterms.dateAccepted2025-02-26-
dc.rights.holderElsevier Ltd.-
Appears in Collections:Dept of Computer Science Embargoed Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfEmbargoed until 4 March 2026. Copyright © 2025 Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ (see: https://www.elsevier.com/about/policies/sharing ).3.95 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons