Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32107
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKripfganz, S-
dc.contributor.authorSarafidis, V-
dc.date.accessioned2025-10-07T16:58:47Z-
dc.date.available2025-10-07T16:58:47Z-
dc.date.issued2025-07-28-
dc.identifierORCiD: Sebastian Kripfganz https://orcid.org/0000-0002-7670-0834-
dc.identifierORCiD: Vasilis Sarafidis https://orcid.org/0000-0001-6808-3947-
dc.identifier.citationKripfganz, S. and Sarafidis, V. (2025) 'Estimating Spatial Dynamic Panel Data Models with Unobserved Common Factors in Stata', Journal of Statistical Software, 113 (6), pp. 1 - 27. doi: 10.18637/jss.v113.i06.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32107-
dc.descriptionArticle: Creative Commons Attribution License (CC-BY) Software: GPL General Public License version 2 or version 3 or a GPL-compatible license.-
dc.description.abstractThis article introduces the spxtivdfreg package in Stata, which implements a general instrumental variables (IV) approach for estimating dynamic spatial panel data models with unobserved common factors or interactive effects, when the number of both cross-sectional and time series observations is large. The estimator has been developed in a recent paper by Cui, Sarafidis, and Yamagata (2023). The underlying idea is to project out the common factors from exogenous covariates using principal components analysis, and to run IV regression in both of two stages, using defactored covariates (and their spatial counterparts) as instruments. The resulting two-stage IV estimator is valid for models with homogeneous slope coefficients, and has several advantages relative to existing popular approaches. In addition, the spxtivdfreg package allows estimation of short-run and long-run direct and indirect effects, as well as total effects, accounting for the cumulative effects over time and across space. Standard errors for such effects are computed using the Delta method. Last, the spxtivdfreg package allows for heterogeneous slope coefficients, as in Chen, Cui, Sarafidis, and Yamagata (2025). In particular, we construct a "mean group" IV estimator, which involves averaging first-step IV estimates of individual-specific slope coefficients.en_US
dc.description.sponsorshipVasilis Sarafidis gratefully acknowledges financial support from the Australian Research Council under research grant number DP-170103135.en_US
dc.format.extent1 - 27-
dc.format.mediumElectronic-
dc.languageen-
dc.language.isoen_USen_US
dc.publisherAmerican Statistical Association Publicationsen_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectpanel dataen_US
dc.subjectlongitudinal modelsen_US
dc.subjecttime lagsen_US
dc.subjectspatial lagsen_US
dc.subjectunobserved common factorsen_US
dc.subjectcross-sectional dependenceen_US
dc.subjectinstrumental variablesen_US
dc.subjectheterogeneous coefficientsen_US
dc.subjectStataen_US
dc.titleEstimating Spatial Dynamic Panel Data Models with Unobserved Common Factors in Stataen_US
dc.typeArticleen_US
dc.date.dateAccepted2024-05-03-
dc.identifier.doihttps://doi.org/10.18637/jss.v113.i06-
dc.relation.isPartOfJournal of Statistical Software-
pubs.issue6-
pubs.publication-statusPublished-
pubs.volume113-
dc.identifier.eissn1548-7660-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2024-05-03-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Economics and Finance Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfArticle: Creative Commons Attribution License (CC-BY) Software: GPL General Public License version 2 or version 3 or a GPL-compatible license.673.17 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons