Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/3223
Title: Variable grouping in multivariate time series via correlation
Authors: Tucker, A
Swift, S
Liu, X
Keywords: correlation;evolutionary programming;genetic algorithms;grouping; multivariate time series (MTS)
Issue Date: 2001
Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Citation: Tucker, A., Swift, S. and Liu, X. (2001) 'Variable grouping in multivariate time series via correlation', IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31 (2), pp.. 235 - 245. doi: 10.1109/3477.915346.
Abstract: The decomposition of high-dimensional multivariate time series (MTS) into a number of low-dimensional MTS is a useful but challenging task because the number of possible dependencies between variables is likely to be huge. This paper is about a systematic study of the “variable groupings” problem in MTS. In particular, we investigate different methods of utilizing the information regarding correlations among MTS variables. This type of method does not appear to have been studied before. In all, 15 methods are suggested and applied to six datasets where there are identifiable mixed groupings of MTS variables. This paper describes the general methodology, reports extensive experimental results, and concludes with useful insights on the strength and weakness of this type of grouping method
URI: https://bura.brunel.ac.uk/handle/2438/3223
DOI: https://doi.org/10.1109/3477.915346
ISSN: 1083-4419
Appears in Collections:Computer Science
Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2001 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works (see: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).271.89 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.