Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32251
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBelhouchet, F-
dc.contributor.authorCaporale, GM-
dc.contributor.authorGil-Alana, LA-
dc.date.accessioned2025-10-31T10:16:08Z-
dc.date.available2025-10-31T10:16:08Z-
dc.date.issued2025-11-19-
dc.identifierORCiD: Guglielmo Maria Caporale https://orcid.org/0000-0002-0144-4135-
dc.identifierORCiD: Luis Alberiko Gil-Alana https://orcid.org/0000-0002-5760-3123-
dc.identifierArticle number: 655-
dc.identifier.citationBelhouchet, F., Caporale, G.M. and Gil-Alana, L.A. (2025) 'Persistence in Stock Returns: Robotics and AI ETFs Versus Other Assets', Journal of Risk and Financial Management, 18 (11), 655, pp. 1 - 13. doi: 10.3390/jrfm18110655.en_US
dc.identifier.issn1911-8066-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32251-
dc.descriptionData Availability Statement: Data are available from authors upon request.en_US
dc.description.abstractThis paper examines the long-memory properties of the returns of exchange-traded funds (ETFs) that provide exposure to companies operating in the fields of artificial intelligence (AI) and robotics listed on the US market, along with other assets such as the WTI crude oil price (West Texas Intermediate), Bitcoin, the S&P 500 index, 10-year US Treasury bonds, and the VIX volatility index. The data frequency is daily and covers the period from 1 January 2023 to 23 June 2025. The adopted fractional integration framework is more general and flexible than those previously used in related studies and allows for a detailed assessment of the degree of persistence in returns. The results indicate that all return series exhibit a high degree of persistence, regardless of the error structure assumed, and that, in general, a linear model adequately captures their dynamics over time. These findings suggest that newly developed AI- and robotics-themed ETFs do not provide investors with additional hedging or diversification benefits compared to more traditional assets, nor do they create new challenges for policymakers concerned with financial stability.en_US
dc.description.sponsorshipThis research was funded by the Ministerio de Ciencia, Innovación y Universidades ‘Agencia Estatal de Investigación’ (AEI) Spain and ‘Fondo Europeo de Desarrollo Regional’ (FEDER), Grant D2023-149516NB-I00 funded by MCIN/AEI/10.13039/501100011033.en_US
dc.format.extent1 - 13-
dc.format.mediumPrint-Electronic-
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectpersistenceen_US
dc.subjectfractional integrationen_US
dc.subjectlong memoryen_US
dc.subjecttrendsen_US
dc.subjectrobotics ETFsen_US
dc.subjectAI ETFsen_US
dc.titlePersistence in Stock Returns: Robotics and AI ETFs Versus Other Assetsen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-10-31-
dc.identifier.doihttps://doi.org/10.3390/jrfm18110655-
dc.relation.isPartOfJournal of Risk and Financial Management-
pubs.issue11-
pubs.publication-statusPulbished-
pubs.volume18-
dc.identifier.eissn1911-8074-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-10-31-
dc.rights.holderThe authors-
dc.contributor.orcidGuglielmo Maria Caporale [0000-0002-0144-4135]-
dc.contributor.orcidLuis Alberiko Gil-Alana [0000-0002-5760-3123]-
Appears in Collections:Dept of Economics and Finance Embargoed Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).289.14 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons