Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32291
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVenkatasubramaniam, G-
dc.contributor.authorGhinea, G-
dc.contributor.authorHone, K-
dc.contributor.authorLi, Y-
dc.coverage.spatialLondon, UK-
dc.date.accessioned2025-11-05T13:17:38Z-
dc.date.available2025-11-05T13:17:38Z-
dc.date.issued2025-10-01-
dc.identifierORCiD: George Ghinea https://orcid.org/0000-0003-2578-5580-
dc.identifierORCiD: Kate Hone https://orcid.org/0000-0001-5394-8354-
dc.identifierORCiD: Yongmin Li https://orcid.org/0000-0003-1668-2440-
dc.identifierArticle number: 06001-
dc.identifier.citationVenkatasubramaniam, G. et al. (2025) 'Personalized Email Marketing with Agentic AI', MATEC Web of Conferences, 413, 06001, pp. 1 - 6. doi: 10.1051/matecconf/202541306001.en_US
dc.identifier.issn2274-7214-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32291-
dc.description.abstractThis study presents an LLM-driven multi-agent framework designed to enhance email marketing effectiveness through Agentic AI-based personalization. The framework integrates specialized autonomous agents that generate, engage, and evaluate by generating marketing emails that specifically cater to the unique traits of different customer personas that are profiled through segmentation. LLM-powered persona modeling is used to simulate engagement responses and predict performance indicators as KPI indicators (open rates and click-through rates and conversion rates). Unlike traditional A/B testing, the LLM-driven engagement scoring model can enable pre-deployment optimization by estimating email effectiveness through persona-based simulations. Experimental results demonstrate that AI-personalized emails consistently outperform their non-personalized counter-parts. The study reveals how Agentic AI provides promising opportunities for email marketing advancements and LLM-driven engagement modeling in transforming scalable, data-driven email marketing strategies.en_US
dc.format.extent1 - 6-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherEDP Sciencesen_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceInternational Conference on Measurement, AI, Quality and Sustainability (MAIQS 2025)-
dc.sourceInternational Conference on Measurement, AI, Quality and Sustainability (MAIQS 2025)-
dc.titlePersonalized Email Marketing with Agentic AIen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-06-08-
dc.identifier.doihttps://doi.org/10.1051/matecconf/202541306001-
dc.relation.isPartOfMATEC Web of Conferences-
pubs.finish-date2025-08-28-
pubs.finish-date2025-08-28-
pubs.publication-statusPublished-
pubs.start-date2025-08-26-
pubs.start-date2025-08-26-
pubs.volume413-
dc.identifier.eissn2261-236X-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-06-08-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © The Authors, published by EDP Sciences, 2025. Licence: Creative Commons. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.184.7 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons