Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32319
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNing, H-
dc.contributor.authorHe, Q-
dc.contributor.authorLei, T-
dc.contributor.authorCao, X-
dc.contributor.authorZhang, W-
dc.contributor.authorChen, Y-
dc.contributor.authorNandi, AK-
dc.date.accessioned2025-11-08T11:18:54Z-
dc.date.available2025-11-08T11:18:54Z-
dc.date.issued2025-10-06-
dc.identifierORCiD: Hailong Ning https://orcid.org/0000-0001-8375-1181-
dc.identifierORCiD: Qi He https://orcid.org/0009-0001-3128-8989-
dc.identifierORCiD: Tao Lei https://orcid.org/0000-0002-2104-9298-
dc.identifierORCiD: Wuxia Zhang https://orcid.org/0000-0002-0759-2489-
dc.identifierORCiD: Yanping Chen https://orcid.org/0000-0001-6548-6070-
dc.identifierORCiD: Asoke K. Nandi https://orcid.org/0000-0001-6248-2875-
dc.identifierArticle number: 5648517-
dc.identifier.citationNing, H. et al. (2025) 'DA2-Net: Integrating SAM2 with Domain Adaption and Difference Aggregation for Remote Sensing Change Detection', IEEE Transactions on Geoscience and Remote Sensing, 63, 5648517, pp. 1 - 17. doi: 10.1109/TGRS.2025.3617980.en_US
dc.identifier.issn0196-2892-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32319-
dc.description.abstractVisual foundation models (VFMs) have been widely applied in the field of remote sensing (RS). However, they still face two main challenges when applied to precise RS change detection (RSCD) tasks in complex scenes. Firstly, the nonnegligible domain shift between natural scene and RS scene limits the direct application of VFMs to the RSCD task. Second, most of the existing RSCD methods may suffer from the boundary displacement problem due to the inadequate exploration of temporal differences for bi-temporal features. To address the above issues, this study proposes a Segment Anything Model 2 (SAM2)-based domain adaptive and spatial difference aggregation network (DA2-Net) for RSCD. The proposed DA2-Net has two main advantages. First, a hierarchical low-rank adaptation (LoRA) strategy is presented by introducing low-rank matrices at key positions of SAM2, which can inject inductive biases from the RS domain into the network and alleviate the domain shift problem. Second, a difference adaptive enhancement module (DAEM) is designed to explore temporal differences for hierarchical bi-temporal features. The DAEM provides respective attention weights for different information through a dual branch of global difference awareness and local detail optimization. Experimental results on SYSU-CD, WHU-CD, and LEVIR-CD datasets demonstrate the superiority of DA2-Net. Code is available at https://github.com/xuptheqi-hash/DA2Net.en_US
dc.description.sponsorship10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 62201452, 62271296 and 62471389); 10.13039/501100017611-Technology Innovation Guidance Special Fund of Shaanxi Province (Grant Number: 2024QY-SZX-17); Innovation Capability Support Plan Project in Shaanxi Province (Grant Number: 2025RS-CXTD-012); Shaanxi Provincial Key Research and Develop Program General Project (Grant Number: 2024SF-YBXM-572).en_US
dc.format.extent1 - 17-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectdomain adaptationen_US
dc.subjectfeature aggregationen_US
dc.subjectremote sensing change detection (RSCD)en_US
dc.subjectvision foundation models (VFMs)en_US
dc.titleDA2-Net: Integrating SAM2 with Domain Adaption and Difference Aggregation for Remote Sensing Change Detectionen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-09-30-
dc.identifier.doihttps://doi.org/10.1109/TGRS.2025.3617980-
dc.relation.isPartOfIEEE Transactions on Geoscience and Remote Sensing-
pubs.publication-statusPublished-
pubs.volume63-
dc.identifier.eissn1558-0644-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-09-30-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/5.21 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons