Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32442
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBai, X-
dc.contributor.authorLi, G-
dc.contributor.authorWang, Z-
dc.contributor.authorZhao, Z-
dc.contributor.authorDong, H-
dc.date.accessioned2025-12-04T13:54:48Z-
dc.date.available2025-12-04T13:54:48Z-
dc.date.issued2025-09-16-
dc.identifierORCiD: Xingzhen Bai https://orcid.org/0000-0001-6754-8490-
dc.identifierORCiD: Guhui Li https://orcid.org/0009-0000-4964-9159-
dc.identifierORCiD: Zidong Wang https://orcid.org/0000-0002-9576-7401-
dc.identifierORCiD: Zhongyi Zhao https://orcid.org/0000-0002-8393-1008-
dc.identifierORCiD: Hongli Dong https://orcid.org/0000-0001-8531-6757-
dc.identifier.citationBai, X. et al. (2025) 'Recursive Unscented Kalman Filtering for Power Distribution Networks Under Hybrid Attacks: Tackling Dynamic Quantization Effects', IEEE Internet of Things Journal, 12 (22), pp. 48993 - 49003. doi: 10.1109/JIOT.2025.3610070.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32442-
dc.description.abstractThis article investigates the state estimation problem for power distribution networks (PDNs) subject to dynamic quantization effects and hybrid cyberattacks, where measurement signals are transmitted from sensors to a remote filter via open digital communication networks. To enhance bandwidth utilization and ensure reliable data transmission, a dynamic quantization mechanism is introduced, which effectively accommodates the dynamic characteristics of power signals. Furthermore, the system is vulnerable to hybrid cyberattacks that may occur simultaneously in a random manner, including denial-of-service (DoS) attacks and false data injection (FDI) attacks, characterized by Bernoulli distributed random variables. The primary objective of this work is to develop a recursive unscented Kalman filter capable of addressing the combined challenges of measurement nonlinearities, dynamic quantization effects, and hybrid cyberattack scenarios. By solving Riccati-like difference equations, an upper bound on the filtering error covariance is derived and subsequently minimized through the design of time-varying filter gains. Extensive simulations on the IEEE 69 distribution test system demonstrate the effectiveness of the proposed filtering algorithm.en_US
dc.description.sponsorship10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 61933007, 62273211, 62403130 and U21A2019); Jiangsu Provincial Scientific Research Center of Applied Mathematics (Grant Number: BK20233002); Natural Science Foundation of Jiangsu Province of China (Grant Number: BK20241286); Jiangsu Funding Program for Excellent Postdoctoral Talent of China (Grant Number: 2024ZB601); China Postdoctoral Science Foundation -China Coal Technology and Engineering Group (CCTEG) Joint Support Program (Grant Number: 2025T055ZGMK); 10.13039/501100000288-Royal Society of U.K.; Alexander von Humboldt Foundation of Germany.en_US
dc.format.extent48993 - 49003-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectdenial-of-service (DoS) attacksen_US
dc.subjectdynamic quantizersen_US
dc.subjectfalse data injection (FDI) attacksen_US
dc.subjectpower distribution networks (PDNs)en_US
dc.subjectrecursive unscented Kalman filtering (UKF)en_US
dc.titleRecursive Unscented Kalman Filtering for Power Distribution Networks Under Hybrid Attacks: Tackling Dynamic Quantization Effectsen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-09-10-
dc.identifier.doihttps://doi.org/10.1109/JIOT.2025.3610070-
dc.relation.isPartOfIEEE Internet of Things Journal-
pubs.issue22-
pubs.publication-statusPublished online-
pubs.volume12-
dc.identifier.eissn2327-4662-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-09-10-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf“For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) license to any Accepted Manuscript version arising.”3.96 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons