Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32454
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlattal, D-
dc.contributor.authorDraghi, B-
dc.contributor.authorMyles, P-
dc.contributor.authorBranson, R-
dc.contributor.authorTucker, A-
dc.date.accessioned2025-12-04T17:48:36Z-
dc.date.available2025-12-04T17:48:36Z-
dc.date.issued2025-
dc.identifierORCiD: Allan Tucker https://orcid.org/0000-0001-5105-3506-
dc.identifier.citationAlattal, D. et al. (2025) 'Probabilistic vs Deep Generative Models: A Fairness Centred Evaluation of Synthetic Healthcare Tabular Data', International Journal of Computational Intelligence Systems, 0 (in submission)en_US
dc.identifier.issn1875-6891-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32454-
dc.description...en_US
dc.description.abstract...en_US
dc.description.sponsorshipThis work was funded by the Regulators Pioneer Fund, Department for Science, Innovation and Technology. This work was also supported by the UK Regulatory Science and Innovation Networks–Implementation Phase: Human Health CERSIs programme through the project RADIANT: Regulatory Science Empowering Innovation in Transformative Digital Health and AI (Grant Ref: MCPC24031), funded by the Medical Research Council (MRC) and Innovate UK.en_US
dc.format.extent1 - 48-
dc.format.mediumPrint-Electronic-
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectsynthetic data generationen_US
dc.subjecttabular dataen_US
dc.subjectfairness in machine learningen_US
dc.subjecthealthcare dataen_US
dc.subjectgenerative modelsen_US
dc.subjectdata fidelityen_US
dc.subjectbias mitigationen_US
dc.subjectBayes boosten_US
dc.subjectGANen_US
dc.subjectVAEen_US
dc.titleProbabilistic vs Deep Generative Models: A Fairness Centred Evaluation of Synthetic Healthcare Tabular Dataen_US
dc.typeArticleen_US
dc.relation.isPartOfInternational Journal of Computational Intelligence Systems-
pubs.issue0-
pubs.publication-statusSubmitted-
pubs.volume00-
Appears in Collections:Dept of Computer Science Embargoed Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfEmbargoed until publication679.69 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.