Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32465
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCalahorra, Y-
dc.contributor.authorDatta, A-
dc.contributor.authorFamelton, J-
dc.contributor.authorKam, D-
dc.contributor.authorShoseyov, O-
dc.contributor.authorKar-Narayan, S-
dc.date.accessioned2025-12-05T14:10:31Z-
dc.date.available2025-12-05T14:10:31Z-
dc.date.issued2018-08-30-
dc.identifierORCiD: Yonatan Calahorra https://orcid.org/0000-0001-9530-1006-
dc.identifierORCiD: James Famelton https://orcid.org/0000-0002-8824-2842-
dc.identifierORCiD: Sohini Kar-Narayan https://orcid.org/0000-0002-8151-1616-
dc.identifier.citationCalahorra, Y. et al. (2018) 'Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers', Nanoscale, 10 (35), pp. 16812 - 16821. doi: 10.1039/c8nr04967j.en_US
dc.identifier.issn2040-3364-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32465-
dc.descriptionData Availability: Supporting data for this paper are available at the DSpace@Cambridge data repository (https://doi.org/10.17863/CAM.25763).en_US
dc.description.abstractCellulose, a major constituent of our natural environment and a structured biodegradable biopolymer, has been shown to exhibit shear piezoelectricity with potential applications in energy harvesters, biomedical sensors, electro-active displays and actuators. In this regard, a high-aspect ratio nanofiber geometry is particularly attractive as flexing or bending will likely produce a larger piezoelectric response as compared to axial deformation in this material. Here we report self-assembled cellulose nanofibers (SA-CNFs) fabricated using a template-wetting process, whereby parent cellulose nanocrystals (CNCs) introduced into a nanoporous template assemble to form rod-like cellulose clusters, which then assemble into SA-CNFs. Annealed SA-CNFs were found to exhibit an anisotropic shear piezoelectric response as directly measured using non-destructive piezo-response force microscopy (ND-PFM). We interpret these results in light of the distinct hierarchical structure in our template-grown SA-CNFs as revealed by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM).en_US
dc.description.sponsorshipThis work was financially supported by a grant from the European Research Council through an ERC Starting Grant (Grant no. ERC-2014-STG-639526, NANOGEN). S. K.-N., Y. C. and A. D. are grateful for financial support from this same grant. A. D. also acknowledges Ramanujan Fellowship, Department of Science and Technology (DST)-Science and Engineering Research Board (SERB), Government of India, for financial support.en_US
dc.format.extent16812 - 16821-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsCreative Commons Attribution 3.0 Unported-
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/-
dc.subjectbioengineeringen_US
dc.subjectnanotechnologyen_US
dc.titleNanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibersen_US
dc.typeArticleen_US
dc.date.dateAccepted2018-07-18-
dc.identifier.doihttps://doi.org/10.1039/c8nr04967j-
dc.relation.isPartOfNanoscale-
pubs.issue35-
pubs.publication-statusPublished-
pubs.volume10-
dc.identifier.eissn2040-3372-
dc.rights.licensehttps://creativecommons.org/licenses/by/3.0/legalcode.en-
dcterms.dateAccepted2018-07-18-
dc.rights.holderThe Royal Society of Chemistry-
dc.contributor.orcidYonatan Calahorra [0000-0001-9530-1006]-
dc.contributor.orcidJames Famelton [0000-0002-8824-2842]-
dc.contributor.orcidSohini Kar-Narayan [0000-0002-8151-1616]-
Appears in Collections:Brunel Centre for Advanced Solidification Technology (BCAST)

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © The Royal Society of Chemistry 2018. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (https://creativecommons.org/licenses/by/3.0/).2.59 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons