Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32660
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlqarawee, Y-
dc.contributor.authorAlhumaima, RS-
dc.contributor.authorAl-Raweshidy, H-
dc.date.accessioned2026-01-16T12:39:05Z-
dc.date.available2026-01-16T12:39:05Z-
dc.date.issued2026-01-05-
dc.identifierORCiD: Yassir Al-Karawi https://orcid.org/0000-0003-2959-3893-
dc.identifierORCiD: Raad S. Alhumaima https://orcid.org/0009-0006-1139-7164-
dc.identifierORCiD: Hamed Al-Raweshidy https://orcid.org/0000-0002-3702-8192-
dc.identifier.citationAlqarawee, Y., Alhumaima, R.S. and Al-Raweshidy, H. (2026) 'Quantum-Cognitive Radar: Adaptive Detection with Entanglement under Thermal-Loss Channels', IEEE Transactions on Aerospace and Electronic Systems, 0 (early access), pp. 1 - 6. doi: 10.1109/TAES.2025.3650733.en_US
dc.identifier.issn0018-9251-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32660-
dc.descriptionCorrespondence.en_US
dc.description.abstractAn adaptive Quantum-Cognitive Radar (QCR), which incorporates a two-mode squeezed-vacuum (TMSV) transmitter, a joint idler-signal receiver, and a Quantum Neural Network (QNN) controller to optimize parameters in real time, is introduced through this exchange of correspondence. An expression for a Gaussian correlation detector has been found for thermal-loss channels and compared with the quantum Chernoff bound (QCB). Hardware-aware simulations show that QCR achieves higher detection probability P<inf>D</inf> at a fixed false-alarm probability PFA (i.e., the probability of declaring a target when it is absent) than both coherent-state radar and nonadaptive quantum baselines. At P<inf>FA</inf> = 0.05, QCR provides an approximately 3 dB advantage with up to 40% reduction in integration time while maintaining robustness as background noise increases. At the operationally stringent P<inf>FA</inf> = 10^{−3}, QCR achieves P<inf>D</inf> = 0.47 versus 0.20 for classical radar, corresponding to a 135% relative improvement. The receiver requires only homodyne/heterodyne sampling and digital correlation, making it compatible with noisy intermediate-scale quantum (NISQ) hardware. The adaptive policy optimizes the parameter vector (M, N<inf>S</inf> , B, T<inf>int</inf>, G) under fixed energy constraints, demonstrating that online adaptation preserves and ex-tends quantum-illumination advantages in nonstationary sensing environments.en_US
dc.format.extent1 - 6-
dc.format.mediumPrint-Electronic-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectadaptive detectionen_US
dc.subjectcognitive radaren_US
dc.subjectquantum illuminationen_US
dc.subjectquantum neural networken_US
dc.subjectquantum radaren_US
dc.subjectthermal-loss channelsen_US
dc.subjecttwo-mode squeezed vacuum (TMSV)en_US
dc.titleQuantum-Cognitive Radar: Adaptive Detection with Entanglement under Thermal-Loss Channelsen_US
dc.typeArticleen_US
dc.date.dateAccepted2026-01-01-
dc.identifier.doihttps://doi.org/10.1109/TAES.2025.3650733-
dc.relation.isPartOfIEEE Transactions on Aerospace and Electronic Systems-
pubs.issue0-
pubs.publication-statusPublished online-
pubs.volume00-
dc.identifier.eissn1557-9603-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2026-01-01-
dc.rights.holderThe Author(s)-
dc.contributor.orcidAl-Karawi, Yassir [0000-0003-2959-3893]-
dc.contributor.orcidAlhumaima, Raad S. [0009-0006-1139-7164]-
dc.contributor.orcidAl-Raweshidy, Hamed [0000-0002-3702-8192]-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfFor the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.3.38 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons