Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32700
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, X-
dc.contributor.authorMeng, H-
dc.contributor.authorLi, Z-
dc.date.accessioned2026-01-22T17:56:43Z-
dc.date.available2026-01-22T17:56:43Z-
dc.date.issued2026-01-17-
dc.identifierORCiD: Xindi Huang https://orcid.org/0009-0005-0580-3886-
dc.identifierORCiD: Hongying Meng https://orcid.org/0000-0002-8836-1382-
dc.identifierORCiD: Zhangyong Li https://orcid.org/0000-0002-3918-069X-
dc.identifierArticle number: 109518-
dc.identifier.citationHuang, X., Meng, H. and Li, Z. (2026) 'Deep learning for epileptic seizure prediction from EEG signals: A review', Biomedical Signal Processing and Control, 117, 109518 , pp. 1 - 19. doi: 10.1016/j.bspc.2026.109518.en_US
dc.identifier.issn1746-8094-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32700-
dc.descriptionData availability: No data was used for the research described in the article.en_US
dc.description.abstractEpilepsy, a chronic noncommunicable brain disease affecting nearly 1% of the global population across all ages, manifests through seizures caused by abnormal electrical activity in the brain. Electroencephalogram (EEG) records the spontaneous electrical activity of the brain which is more suitable for analysing Epileptic Seizure (ES) than other modalities such as functional Near-Infrared Spectroscopy (fNIRS) and functional Magnetic Resonance Imaging (fMRI). ES prediction aims to provide advanced warning to patients, allowing timely intervention and preventing dangerous situations. Deep Learning (DL) has emerged as a promising approach for ES prediction due to its superior noise removal capabilities, nonlinear feature representation, and strong classification ability. This paper presents a comprehensive review of DL-based approaches for ES prediction in last 5 years, highlighting current research trends, identifying existing challenges, and suggesting potential future research directions.en_US
dc.description.sponsorshipBrunel University London; Royal Society, United Kingdom (IEC\NSFC\223285); National Natural Science Foundation of China (General Program) No. 62171073.en_US
dc.format.extent1 - 19-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectepileptic seizureen_US
dc.subjectepileptic seizure predictionen_US
dc.subjectdeep learningen_US
dc.subjectelectroencephalogramen_US
dc.titleDeep learning for epileptic seizure prediction from EEG signals: A reviewen_US
dc.typeArticleen_US
dc.date.dateAccepted2026-01-08-
dc.identifier.doihttps://doi.org/10.1016/j.bspc.2026.109518-
dc.relation.isPartOfBiomedical Signal Processing and Control-
pubs.publication-statusPublished-
pubs.volume117-
dc.identifier.eissn1746-8108-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2026-01-08-
dc.rights.holderThe Authors-
dc.contributor.orcidHuang, Xindi []-
dc.contributor.orcidMeng, Hongying [0000-0002-8836-1382]-
dc.contributor.orcidLi, Zhangyong [0000-0002-3918-069X]-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2026 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( https://creativecommons.org/licenses/by/4.0/ ).4.72 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons