Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32744
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQin, W-
dc.contributor.authorGong, X-
dc.contributor.authorHou, W-
dc.contributor.authorGan, L-
dc.contributor.authorGuo, L-
dc.date.accessioned2026-01-27T13:22:22Z-
dc.date.available2026-01-27T13:22:22Z-
dc.date.issued2025-12-24-
dc.identifierORCiD: Xiaoxue Gong https://orcid.org/0000-0002-7440-4003-
dc.identifierORCiD: Weigang Hou https://orcid.org/0000-0002-9136-279X-
dc.identifierORCiD: Lu Gan https://orcid.org/0000-0003-1056-7660-
dc.identifierORCiD: Lei Guo https://orcid.org/0000-0001-5860-0082-
dc.identifier.citationQin, W. et al. (2025) 'Experimental Demonstration of Bending Eavesdropping Detection in Optical Communications Using a Physics-Informed Convolutional Network', Journal of Lightwave Technology, 2025, 0 (early access), pp. 1 - 10. doi: 10.1109/JLT.2025.3647694.en_US
dc.identifier.issn0733-8724-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32744-
dc.description.abstractThis paper proposes a physics-informed convolutional network (PICN) scheme to detect bending eavesdropping attacks in dual-polarization coherent optical communication systems. We present a theoretical model for optical signal transmission under bending eavesdropping, analyzing the impact of bending eavesdropping on fiber physical characteristics such as dispersion and nonlinear effect. These physical characteristics are embedded into a convolutional neural network (CNN) to construct PICN, which automatically captures subtle variations of the signal features under bending eavesdropping. To validate the effectiveness of the scheme, we first develop an eavesdropping experimental platform in an 80-km 168 Gbps dual-polarization quadrature phase shift keying (QPSK) coherent optical communication system. Polarization data are then collected under normal transmission, 10.8 mm and 15 mm bending radius. Finally, the detection performance of four classifiers including PICN, random forest (RF), support vector machine (SVM), and K-nearest neighbor (KNN) are evaluated at single and mixed bending radii. Experimental results demonstrate that PICN achieves detection accuracies of 100%, 98.53%, and 99.02% under 10.8 mm, 15 mm, and mixed bending radii, respectively. Our work provides novel theoretical foundations and innovative perspectives for bending eavesdropping detection in optical fiber communication systems.en_US
dc.format.extent1 - 10-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectbending eavesdropping detectionen_US
dc.subjectsecure optical communications physics-informed convolutional networken_US
dc.titleExperimental Demonstration of Bending Eavesdropping Detection in Optical Communications Using a Physics-Informed Convolutional Networken_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1109/JLT.2025.3647694-
dc.relation.isPartOfJournal of Lightwave Technology-
pubs.issue0-
pubs.publication-statusPublished-
pubs.volume00-
dc.identifier.eissn1558-2213-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe Author(s)-
dc.contributor.orcidGong, Xiaoxue [0000-0002-7440-4003]-
dc.contributor.orcidHou, Weigang [0000-0002-9136-279X]-
dc.contributor.orcidGan, Lu [0000-0003-1056-7660]-
dc.contributor.orcidGuo, Lei [0000-0001-5860-0082]-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfFor the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.983.63 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons