Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/554
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWinter, M-
dc.contributor.authorWei, J-
dc.contributor.authorYeung, W-K-
dc.coverage.spatial31en
dc.date.accessioned2007-01-22T12:18:19Z-
dc.date.available2007-01-22T12:18:19Z-
dc.date.issued2005-
dc.identifier.citationAsymptotic Analysis 34 (2005), 75-110en
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/554-
dc.description.abstractOf concern is the following singularly perturbed semilinear elliptic problem \begin{equation*} \left\{ \begin{array}{c} \mbox{${\epsilon}^2\Delta u -u+u^p =0$ in $\Omega$}\\ \mbox{$u>0$ in $\Omega$ and $\frac{\partial u}{\partial \nu}=0$ on $\partial \Omega$}, \end{array} \right. \end{equation*} where $\Omega$ is a bounded domain in ${\mathbf{R}}^N$ with smooth boundary $\partial \Omega$, $\epsilon>0$ is a small constant and $1< p<\left(\frac{N+2}{N-2}\right)_+$. Associated with the above problem is the energy functional $J_{\epsilon}$ defined by \begin{equation*} J_{\epsilon}[u]:=\int_{\Omega}\left(\frac{\epsilon^2}{2}{|\nabla u|}^2 +\frac{1}{2}u^2 -F(u)\right)dx \end{equation*} for $u\in H^1(\Omega)$, where $F(u)=\int_{0}^{u}s^p ds$. Ni and Takagi (\cite{nt1}, \cite{nt2}) proved that for a single boundary spike solution $u_{\epsilon}$, the following asymptotic expansion holds: \begin{equation*} (1) \ \ \ \ \ \ \ \ J_{\epsilon}[u_{\epsilon}]=\epsilon^{N} \left[\frac{1}{2}I[w]-c_1 \epsilon H(P_{\epsilon})+o(\epsilon)\right], \end{equation*} where $I[w]$ is the energy of the ground state, $c_1 >0$ is a generic constant, $P_{\epsilon}$ is the unique local maximum point of $u_{\epsilon}$ and $H(P_{\epsilon})$ is the boundary mean curvature function at $P_{\epsilon}\in \partial \Omega$. Later, Wei and Winter (\cite{ww3}, \cite{ww4}) improved the result and obtained a higher-order expansion of $J_{\epsilon}[u_{\epsilon}]$: \begin{equation*} (2) \ \ \ \ \ \ J_{\epsilon}[u_{\epsilon}]=\epsilon^{N} \left[\frac{1}{2}I[\omega]-c_{1} \epsilon H(P_{\epsilon})+\epsilon^2 [c_2(H(P_\epsilon))^2 +c_{3} R(P_\epsilon)]+o(\epsilon^2)\right], \end{equation*} where $c_2$ and $c_3>0$ are generic constants and $R(P_\epsilon)$ is the scalar curvature at $P_\epsilon$. However, if $N=2$, the scalar curvature is always zero. The expansion (2) is no longer sufficient to distinguish spike locations with same mean curvature. In this paper, we consider this case and assume that $ 2 \leq p <+\infty$. Without loss of generality, we may assume that the boundary near $P\in\partial\Om$ is represented by the graph $ \{ x_2 = \rho_{P} (x_1) \}$. Then we have the following higher order expansion of $J_\epsilon[u_\epsilon]:$ \begin{equation*} (3) \ \ \ \ \ J_\epsilon [u_\epsilon] =\epsilon^N \left[\frac{1}{2}I[w]-c_1 \epsilon H({P_\epsilon})+c_2 \epsilon^2(H({P_\epsilon}))^2 ] +\epsilon^3 [P(H({P_\epsilon}))+c_3S({P_\epsilon})]+o(\epsilon^3)\right], \end{equation*} where $ H(P_\ep)= \rho_{P_\ep}^{''} (0)$ is the curvature, $P(t)=A_1 t+A_2 t^2+A_3 t^3$ is a polynomial, $c_1$, $c_2$, $c_3$ and $A_1$, $A_2$,$A_3$ are generic real constants and $S(P_\epsilon)= \rho_{P_\ep}^{(4)} (0)$. In particular $c_3<0$. Some applications of this expansion are given.en
dc.format.extent317089 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherIOS Pressen
dc.subjectHigher Order Expansionsen
dc.subjectSingularly Perturbed Problemen
dc.titleA Higher-Order Energy Expansion to Two-Dimensional Singularly Neumann Problemsen
dc.typeResearch Paperen
Appears in Collections:Dept of Mathematics Research Papers
Mathematical Sciences

Files in This Item:
File Description SizeFormat 
33-hio2d4.pdf309.66 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.