Please use this identifier to cite or link to this item:
                
    
    http://bura.brunel.ac.uk/handle/2438/5780| Title: | Higher order parallel splitting methods for parabolic partial differential equations | 
| Authors: | Taj, Malik Shahadat Ali | 
| Advisors: | Twizell, EH | 
| Issue Date: | 1995 | 
| Publisher: | Brunel University, School of Information Systems, Computing and Mathematics | 
| Abstract: | The thesis develops two families of numerical methods, based upon new rational approximations to the matrix exponential function, for solving second-order parabolic partial differential equations. These methods are L-stable, third- and fourth-order accurate in space and time, and do not require the use of complex arithmetic. In these methods second-order spatial derivatives are approximated by new difference approximations. Then parallel algorithms are developed and tested on one-, two- and three-dimensional heat equations, with constant coefficients, subject to homogeneous boundary conditions with discontinuities between initial and boundary conditions. The schemes are seen to have high accuracy. A family of cubic polynomials, with a natural number dependent coefficients, is also introduced. Each member of this family has real zeros. Third- and fourth-order methods are also developed for one-dimensional heat equation subject to time-dependent boundary conditions, approximating the integral term in a new way, and tested on a variety of problems from the literature. | 
| Description: | This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. | 
| URI: | http://bura.brunel.ac.uk/handle/2438/5780 | 
| Appears in Collections: | Dept of Mathematics Theses Mathematical Sciences  | 
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| FulltextThesis.pdf | 3.31 MB | Adobe PDF | View/Open | 
Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.