Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/5821
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, C-
dc.contributor.authorYang, S-
dc.date.accessioned2011-09-19T14:09:13Z-
dc.date.available2011-09-19T14:09:13Z-
dc.date.issued2009-
dc.identifier.citationIn Proceedings of the IEEE Congress on Evolutionary Computation, 2009 (CEC '09), Trondheim: 439 - 446, 2009-05-18 - 2009-05-21en_US
dc.identifier.isbn978-1-4244-2958-5-
dc.identifier.urihttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4982979&tag=1en
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/5821-
dc.descriptionThis article is posted here with permission of the IEEE - Copyright @ 2009 IEEEen_US
dc.description.abstractIn the real world, many applications are nonstationary optimization problems. This requires that optimization algorithms need to not only find the global optimal solution but also track the trajectory of the changing global best solution in a dynamic environment. To achieve this, this paper proposes a clustering particle swarm optimizer (CPSO) for dynamic optimization problems. The algorithm employs hierarchical clustering method to track multiple peaks based on a nearest neighbor search strategy. A fast local search method is also proposed to find the near optimal solutions in a local promising region in the search space. Six test problems generated from a generalized dynamic benchmark generator (GDBG) are used to test the performance of the proposed algorithm. The numerical experimental results show the efficiency of the proposed algorithm for locating and tracking multiple optima in dynamic environments.en_US
dc.description.sponsorshipThis work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/E060722/1.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectParticle swarm optimisationen_US
dc.subjectPattern clusteringen_US
dc.subjectSearch problemsen_US
dc.titleA clustering particle swarm optimizer for dynamic optimizationen_US
dc.typeConference Paperen_US
dc.identifier.doihttp://dx.doi.org/10.1109/CEC.2009.4982979-
pubs.organisational-data/Brunel-
pubs.organisational-data/Brunel/Brunel (Active)-
pubs.organisational-data/Brunel/Brunel (Active)/School of Info. Systems, Comp & Maths-
pubs.organisational-data/Brunel/Research Centres (RG)-
pubs.organisational-data/Brunel/Research Centres (RG)/CIKM-
pubs.organisational-data/Brunel/School of Information Systems, Computing and Mathematics (RG)-
pubs.organisational-data/Brunel/School of Information Systems, Computing and Mathematics (RG)/CIKM-
Appears in Collections:Publications
Computer Science
Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf189.35 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.