Please use this identifier to cite or link to this item:
Title: Associative memory scheme for genetic algorithms in dynamic environments
Authors: Yang, S
Keywords: Dynamic optimization;Genetic algorithms;Memory scheme;Dynamic environments
Issue Date: 2006
Publisher: Springer-Verlag
Citation: EvoWorkshops 2006: Applications of Evolutionary Computing, Lecture Notes in Computer Science 3907: 788 - 799, 2006
Abstract: In recent years dynamic optimization problems have attracted a growing interest from the community of genetic algorithms with several approaches developed to address these problems, of which the memory scheme is a major one. In this paper an associative memory scheme is proposed for genetic algorithms to enhance their performance in dynamic environments. In this memory scheme, the environmental information is also stored and associated with current best individual of the population in the memory. When the environment changes the stored environmental information that is associated with the best re-evaluated memory solution is extracted to create new individuals into the population. Based on a series of systematically constructed dynamic test environments, experiments are carried out to validate the proposed associative memory scheme. The environmental results show the efficiency of the associative memory scheme for genetic algorithms in dynamic environments.
Description: Copyright @ Springer-Verlag Berlin Heidelberg 2006.
ISSN: 0302-9743
Appears in Collections:Publications
Computer Science
Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf173.02 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.