Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6936
Title: Poiseuille and Nusselt numbers for laminar flow in microchannels with rounded corners
Authors: Lorenzini, M
Morini, GL
2nd Micro and Nano Flows Conference (MNF2009)
Keywords: Laminar flow;Microchannel;Nusselt number;Poiseuille number
Issue Date: 2009
Publisher: Brunel University
Citation: 2nd Micro and Nano Flows Conference, Brunel University, West London, UK, 01-02 September 2009
Abstract: This work investigates the frictional and heat transfer behaviour of laminar, fully-developed flow in microchannels with trapezoidal and rectangular cross-section and rounded corners under H1 boundary conditions. The equations of momentum and energy are solved numerically, and the results validated with analytical data, when available. The runs have been carried out for different aspect ratios and nondimensional radii of curvature Rc, with either all sides or three sides heated, one short side adiabatic for rectangular geometries and three sides heated, the longest one adiabatic for trapezoidal geometries. The Poiseuille and Nusselt numbers are reported and show, for the rectangular cross-section heated on all sides, a maximum increase for the highest value of the aspect ratio (β=1) with increments in the Poiseuille and Nusselt numbers of about 11% and 16% respectively for values of Rc * of 0.5, increasing as the geometry approaches the circular duct (12.5% and 21%). The increase is less pronounced as β decreases and also when only three sides are heated (maximum increase of Nu around 10%); in the case of the trapezoidal geometry the effects of rounding the corners are almost negligible (a maximum increase in Nu of around 2%).
Description: This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.
URI: http://bura.brunel.ac.uk/handle/2438/6936
ISBN: 978-1-902316-72-7
978-1-902316-73-4
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:
File Description SizeFormat 
MNF2009.pdf272.34 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.