Please use this identifier to cite or link to this item:
Title: MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors
Authors: Bravar, U
Bogomilov, M
Karadzhov, Y
Kolev, D
Russinov, I
Tsenov, R
Wang, L
Xu, FY
Zheng, SX
Bertoni, R
Bonesini, M
Snopok, P
Cecchet, G
Coney, L
Torun, Y
Onel, Y
Cline, D
Lee, K
Fukui, Y
Yang, X
Rimmer, RA
Littlefield, M
Cremaldi, LM
Fletcher, R
Hanson, G
Heidt, C
Gallardo, J
Kahn, S
Kirk, H
Dobbs, A
Palmer, RB
Capponi, M
Nebrensky, JJ
Iaciofano, A
Orestano, D
Pastore, F
Tortora, L
Ishimoto, S
Suzuki, S
Yoshimura, K
Mori, Y
Dornan, PJ
Kuno, Y
Hare, R
Sakamoto, H
Sato, A
Yano, T
Yoshida, M
Filthaut, F
Vretenar, M
Ramberger, S
Blondel, A
Cadoux, F
Fish, A
Forrest, D
Masciocchi, F
Graulich, JS
Verguilov, V
Wisting, H
Petitjean, C
Seviour, R
Ellis, M
Kyberd, P
Soler, FJP
Walaron, K
Cooke, P
Gamet, R
Alecou, A
Apollonio, M
Nicholls, A
Barber, G
Jamdagni, A
Kasey, V
Khaleeq, M
Long, K
Pasternak, J
Sakamoto, H
Overton, E
Sashalmi, T
Blackmore, V
Norton, PR
Cobb, J
Lau, W
Rayner, M
Tunnell, CD
Witte, H
Yang, S
Alexander, J
Charnley, G
Robinson, M
Griffiths, S
Adey, D
Martlew, B
Moss, A
Mullacrane, I
Oats, A
York, S
Apsimon, R
Alexander, RJ
Barclay, P
Baynham, DE
Smith, P
Prior, C
Bradshaw, TW
Courthold, M
Hayler, RET
Hills, M
Jones, T
McNubbin, N
Murray, WJ
Nelson, C
Rochford, JH
Rogers, C
Spensley, W
Tilley, K
Booth, CN
Hodgson, P
Hart, TL
Nicholson, R
Back, J
Boyd, S
Harrison, P
Norem, J
Bross, AD
Geer, S
Mazza, R
Moretti, A
Neuffer, D
Summers, DJ
Popovic, M
Qian, Z
Raja, R
Stefanski, R
Cummings, MAC
Roberts, TJ
DeMello, A
Green, MA
Palladino, V
Li, D
Bari, AD
Sessler, AM
Virostek, S
Zisman, MS
Freemire, B
Hanlet, PM
Huang, D
Kafka, G
Kaplan, DM
Issue Date: 2011
Publisher: American Physical Society
Citation: Proceedings of the DPF-2011 Conference, Providence, Rhode Island, August 8-13, 2011
Abstract: The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.
Description: Copyright @ 2011 APS
Appears in Collections:Electronic and Computer Engineering
Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf1.17 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.