Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/8933
Title: Biodegradable and compostable alternatives to conventional plastics
Authors: Song, JH
Murphy, RJ
Narayan, R
Davies, GBH
Keywords: Biodegradable;Compostable;Biopolymers;Packaging;Environment;Waste management
Issue Date: 2009
Publisher: The Royal Society
Citation: Philosophical Transactions of The Royal Society B: Biological Sciences, 364(1526), 2127 - 2139, 2009
Abstract: Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.
Description: This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Royal Society.
URI: http://rstb.royalsocietypublishing.org/content/364/1526/2127
http://bura.brunel.ac.uk/handle/2438/8933
DOI: http://dx.doi.org/10.1098/rstb.2008.0289
ISSN: 0962-8436
Appears in Collections:Mechanical and Aerospace Engineering
Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Notice.pdf41.23 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.