Please use this identifier to cite or link to this item:
Title: Direct numerical simulation of the near-field dynamics of annular gas-liquid two-phase jets
Authors: Siamas, GA
Jiang, X
Wrobel, LC
Keywords: Direct numerical simulation;Near-field dynamics;Gas-liquid two-phase jets;Mixed fluid treatment;Gas liquid flows
Issue Date: 2009
Publisher: American Institute of Physics
Citation: Physics of Fluids, 21: Article no. 042103, 2009
Abstract: Direct numerical simulation has been used to examine the near-field dynamics of annular gas-liquid two-phase jets. Based on an Eulerian approach with mixed fluid treatment, combined with an adapted volume of fluid method and a continuum surface force model, a mathematical formulation for the flow system is presented. The swirl introduced at the jet nozzle exit is based on analytical inflow conditions. Highly accurate numerical methods have been utilized for the solution of the compressible, unsteady, Navier–Stokes equations. Two computational cases of gas-liquid two-phase jets including swirling and nonswirling cases have been performed to investigate the effects of swirl on the flow field. In both cases the flow is more vortical at the downstream locations. The swirling motion enhances both the flow instability resulting in a larger liquid spatial dispersion and the mixing resulting in a more homogeneous flow field with more evenly distributed vorticity at the downstream locations. In the annular nonswirling case, a geometrical recirculation zone adjacent to the jet nozzle exit was observed. It was identified that the swirling motion is responsible for the development of a central recirculation zone, and the geometrical recirculation zone can be overwhelmed by the central recirculation zone leading to the presence of the central recirculation region only in the swirling gas-liquid case. Results from a swirling gas jet simulation were also included to examine the effect of the liquid sheet on the flow physics. The swirling gas jet developed a central recirculation region, but it did not develop a precessing vortex core as the swirling gas-liquid two-phase jet. The results indicate that a precessing vortex core can exist at relatively low swirl numbers in the gas-liquid two-phase flow. It was established that the liquid greatly affects the precession and the swirl number alone is an insufficient criterion for the development of a precessing vortex core.
Description: Copyright © 2009 American Institute of Physics.
ISSN: 1070-6631
Appears in Collections:Mechanical and Aerospace Engineering
Dept of Mechanical Aerospace and Civil Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf2.33 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.