Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/9867
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSandi, C-
dc.contributor.authorSandi, M-
dc.contributor.authorJassal, H-
dc.contributor.authorEzzatizadeh, V-
dc.contributor.authorAnjomani-Virmouni, S-
dc.contributor.authorAl-Mahdawi, S-
dc.contributor.authorPook, MA-
dc.date.accessioned2015-01-21T11:18:37Z-
dc.date.available2014-02-21-
dc.date.available2015-01-21T11:18:37Z-
dc.date.issued2014-
dc.identifier.citationPLoS ONE,9(2): e89488, (2014)en_US
dc.identifier.issn1932-6203-
dc.identifier.urihttp://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089488-
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/9867-
dc.descriptionThis article has been made available through the Brunel Open Access Publishing Fund.-
dc.description.abstractBackground: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. Methodology/Principal Findings: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. Conclusions/Significance: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice. © 2014 Sandi et al.en_US
dc.languageeng-
dc.language.isoenen_US
dc.publisherPublic Library of Scienceen_US
dc.subjectFriedreich ataxia (FRDA)en_US
dc.subjectGAA repeat expansionen_US
dc.subjectFRDA pathogenesisen_US
dc.titleGeneration and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell modelsen_US
dc.typeArticleen_US
dc.identifier.doihttp://dx.doi.org/10.1371/journal.pone.0089488-
dc.relation.isPartOfPLoS ONE-
dc.relation.isPartOfPLoS ONE-
pubs.issue2-
pubs.issue2-
pubs.volume9-
pubs.volume9-
pubs.organisational-data/Brunel-
pubs.organisational-data/Brunel/Brunel Staff by College/Department/Division-
pubs.organisational-data/Brunel/Brunel Staff by College/Department/Division/College of Health and Life Sciences-
pubs.organisational-data/Brunel/Brunel Staff by College/Department/Division/College of Health and Life Sciences/Dept of Life Sciences-
pubs.organisational-data/Brunel/Brunel Staff by College/Department/Division/College of Health and Life Sciences/Dept of Life Sciences/Biological Sciences-
pubs.organisational-data/Brunel/Brunel Staff by Institute/Theme-
pubs.organisational-data/Brunel/Brunel Staff by Institute/Theme/Institute of Environmental, Health and Societies-
pubs.organisational-data/Brunel/Brunel Staff by Institute/Theme/Institute of Environmental, Health and Societies/Synthetic Biology-
pubs.organisational-data/Brunel/University Research Centres and Groups-
pubs.organisational-data/Brunel/University Research Centres and Groups/School of Health Sciences and Social Care - URCs and Groups-
pubs.organisational-data/Brunel/University Research Centres and Groups/School of Health Sciences and Social Care - URCs and Groups/Brunel Institute for Ageing Studies-
pubs.organisational-data/Brunel/University Research Centres and Groups/School of Health Sciences and Social Care - URCs and Groups/Centre for Systems and Synthetic Biology-
Appears in Collections:Biological Sciences
Brunel OA Publishing Fund
Dept of Life Sciences Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf4.97 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.