Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/11710
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoodall, S-
dc.contributor.authorTwomey, R-
dc.contributor.authorAmann, M-
dc.contributor.authorRoss, EZ-
dc.contributor.authorLovering, AT-
dc.contributor.authorRomer, LM-
dc.contributor.authorSubudhi, AW-
dc.contributor.authorRoach, RC-
dc.date.accessioned2015-12-04T16:02:03Z-
dc.date.available2014-
dc.date.available2015-12-04T16:02:03Z-
dc.date.issued2014-
dc.identifier.citationActa Physiologica, 210 (4): pp. 875 - 888, (2014)en_US
dc.identifier.urihttp://onlinelibrary.wiley.com/doi/10.1111/apha.12241/abstract-
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/11710-
dc.description.abstractAims: We asked whether acclimatization to chronic hypoxia (CH) attenuates the level of supraspinal fatigue that is observed after locomotor exercise in acute hypoxia (AH). Methods: Seven recreationally active participants performed identical bouts of constant-load cycling (131 39 W, 10.1 1.4 min) on three occasions(i) in normoxia (N, PIO2, 147.1 mmHg); (ii) in AH (FIO2, 0.105; PIO2, 73.8 mmHg); and (iii) after 14 days in CH (5260 m; PIO2, 75.7 mmHg). Throughout trials, prefrontal-cortex tissue oxygenation and middle cerebral artery blood velocity (MCAV) were assessed using near-infrared-spectroscopy and transcranial Doppler sonography. Pre- and post-exercise twitch responses to femoral nerve stimulation and transcranial magnetic stimulation were obtained to assess neuromuscular and corticospinal function. Results: In AH, prefrontal oxygenation declined at rest (D7 5%) and end-exercise (D26 13%) (P < 0.01); the degree of deoxygenation in AH was greater than N and CH (P < 0.05). The cerebral O2 delivery index (MCAV 9 CaO2) was 19 14% lower during the final minute of exercise in AH compared to N (P = 0.013) and 20 12% lower compared to CH (P = 0.040). Maximum voluntary and potentiated twitch force were decreased below baseline after exercise in AH and CH, but not N. Cortical voluntary activation decreased below baseline after exercise in AH (D11%, P = 0.014), but not CH (D6%, P = 0.174) or N (D4%, P = 0.298). A twofold greater increase in motor-evoked potential amplitude was evident after exercise in CH compared to AH and N. Conclusion: These data indicate that exacerbated supraspinal fatigue after exercise in AH is attenuated after 14 days of acclimatization to altitude. The reduced development of supraspinal fatigue in CH may have been attributable to increased corticospinal excitability, consequent to an increased cerebral O2 delivery.en_US
dc.description.sponsorshipDepartment of Defense (W81XWH-11-2-0040 TATRC to RR and W81XWH-10-2-0114 to ATL); the Cardiopulmonary & Respiratory Physiology Laboratory, University of Oregon; the Altitude Research Center and the Charles S. Houston Endowed Professorship, Department of Emergency Medicine, School of Medicine, University of Colorado Denver; the Faculty of Health & Life Sciences, Northumbria University; the School of Sport and Service Management, University of Brighton; and a National Heart, Lung, and Blood Institute R00 Grant (HL-103786 to MA).en_US
dc.format.extent875 - 888-
dc.language.isoenen_US
dc.publisherWileyen_US
dc.subjectAdaptationen_US
dc.subjectAltitudeen_US
dc.subjectExerciseen_US
dc.subjectTranscranial magnetic stimulationen_US
dc.titleAltitudeOmics: Exercise-induced supraspinal fatigue is attenuated in healthy humans after acclimatisation to high altitudeen_US
dc.typeArticleen_US
dc.identifier.doihttp://dx.doi.org/10.1111/apha.12241-
dc.relation.isPartOfActa Physiologica-
pubs.volume210-
Appears in Collections:Dept of Life Sciences Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf16.98 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.