Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/13461
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, BX-
dc.contributor.authorWang, XK-
dc.contributor.authorYu, K-
dc.date.accessioned2016-11-08T16:01:19Z-
dc.date.available2016-11-08T16:01:19Z-
dc.date.issued2016-03-17-
dc.identifier.citationWang, B.X., and Wang, X.K. and Yu, K. (2017) 'Inference on the Kumaraswamy distribution', Communications in Statistics - Theory and Methods, 46 (5), pp. 2079 - 2090. doi: 10.1080/03610926.2015.1032425.en_US
dc.identifier.issn0361-0926-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/13461-
dc.description.abstractMany lifetime distribution models have successfully served as population models for risk analysis and reliability mechanisms. The Kumaraswamy distribution is one of these distributions which is particularly useful to many natural phenomena whose outcomes have lower and upper bounds or bounded outcomes in the biomedical and epidemiological research. This paper studies point estimation and interval estimation for the Kumaraswamy distribution. The inverse estimators for the parameters of the Kumaraswamy distribution are derived. Numerical comparisons with MLE and biased-corrected methods clearly indicate the proposed inverse estimators are promising. Confidence intervals for the parameters and reliability characteristics of interest are constructed using pivotal or generalized pivotal quantities. Then the results are extended to the stress-strength model involving two Kumaraswamy populations with different parameter values. Construction of confidence intervals for the stress-strength reliability is derived. Extensive simulations are used to demonstrate the performance of confidence intervals constructed using generalized pivotal quantities.en_US
dc.format.extent2079 - 2090-
dc.format.mediumPrint-Electronic-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rightsCreative Commons Attribution-NonCommercial 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/-
dc.subjectKumaraswamy distributionen_US
dc.subjectexact inferenceen_US
dc.subjectconfidence intervalen_US
dc.subjectstress strength modelen_US
dc.subjectpivotal quantityen_US
dc.subjectorder statisticsen_US
dc.titleInference on the Kumaraswamy distributionen_US
dc.typeArticleen_US
dc.date.dateAccepted2015-03-18-
dc.identifier.doihttps://doi.org/10.1080/03610926.2015.1032425-
dc.relation.isPartOfCommunications in Statistics - Theory and Methods-
pubs.issue5-
pubs.publication-statusPublished-
pubs.volume46-
dc.identifier.eissn1532-415X-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc/4.0/legalcode.en-
dcterms.dateAccepted2015-03-18-
dc.rights.holderTaylor & Francis-
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdfCopyright © 2016 Taylor & Francis. his is an Accepted Manuscript of an article published by Taylor & Francis in Communications in Statistics - Theory and Methods, on 17 Mar 2016, available at: https://www.tandfonline.com/10.1080/03610926.2015.1032425 (see: https://authorservices.taylorandfrancis.com/research-impact/sharing-versions-of-journal-articles/).114.88 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons