Please use this identifier to cite or link to this item:
Title: Delay-distribution-dependent H<inf>∞</inf> state estimation for delayed neural networks with (x,v)-dependent noises and fading channels
Authors: Sheng, L
Wang, Z
Tian, E
Alsaadi, FE
Keywords: Delayed neural networks;H∞ state estimation;Delay-distribution-dependent condition;Random delay;(x, v)-dependent noises;Fading channels
Issue Date: 2016
Publisher: Elsevier
Citation: Neural Networks, 84: pp. 102 - 112, (2016)
Abstract: This paper deals with the H∞ state estimation problem for a class of discrete-time neural networks with stochastic delays subject to state- and disturbance-dependent noises (also called (x,v)-dependent noises) and fading channels. The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribed H∞ performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results.
ISSN: 0893-6080
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf239.05 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.